Heaviside step function
From Free net encyclopedia
Image:Dirac distribution CDF.png
The Heaviside step function, sometimes called the unit step function and named in honor of Oliver Heaviside, is a discontinuous function whose value is zero for negative argument and one for positive argument:
- <math>u(x)=\begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}</math>
The function is used in the mathematics of control theory and signal processing to represent a signal that switches on at a specified time and stays switched on indefinitely.
It is the cumulative distribution function of a random variable which is almost surely 0. (See constant random variable.)
The Heaviside function is the integral of the Dirac delta function.
- <math> u(x) = \int_{-\infty}^x { \delta(t)} dt </math>
The value of u(0) is occasionally of disputed value. Some writers give u(0) = 0, some u(0) = 1. u(0) = 1/2 is the most consistent choice used, since it maximizes the symmetry of the function and becomes completely consistent with the signum function. This makes for a more general definition:
- <math> u(x) =
\begin{cases} 0, & x < 0 \\ \frac{1}{2}, & x = 0 \\ 1, & x > 0 \end{cases}
</math>
- <math> u(x) = \frac{1}{2} \left ( 1 + \sgn(x) \right ) </math>
To remove the ambiguity of which value to use for u(0), a subscript specifying which value may be used:
- <math> u_n(x) =
\begin{cases} 0, & x < 0 \\ n, & x = 0 \\ 1, & x > 0 \end{cases}
</math>
Often an integral representation of the step function is useful:
- <math>u(x)=\lim_{ \epsilon \to 0} -{1\over 2\pi i}\int_{-\infty}^\infty {1 \over \tau+i\epsilon} e^{-i x \tau} d\tau </math>
Discrete form
We can also define an alternative form of the unit step as a function of a discrete variable n:
- <math>u[n]=\begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}</math>
where n is an integer.
This function is the cumulative summation of the Kronecker delta:
- <math> u[n] = \sum_{k=-\infty}^{n} \delta[k] \,</math>
where
- <math> \delta[k] = \delta_{k,0} \,</math>
is the discrete unit impulse function.
Analytic approximations
For a smooth approximation to the step function, one can use the logistic function
- <math>u(x)={1\over 2}(1+\tanh kx)={1\over 1+e^{-2kx}}</math>,
where larger k corresponds to a sharper transition at x=0.
See also
- Rectangular function
- Step response
- Dirac delta
- Signum function
- Negative and non-negative numbersca:Funció esglaó
da:Heaviside trinfunktion de:Heaviside-Funktion es:Función escalón unitario fr:Fonction de Heaviside it:Funzione gradino di Heaviside he:פונקציית מדרגה nl:Heaviside stapfunctie ja:ヘヴィサイドの階段関数 pl:Funkcja skokowa Heaviside'a sr:Хевисајдова одскочна функција su:Heaviside step function