List of integrals of rational functions

From Free net encyclopedia

The following is a list of integrals (antiderivative functions) of rational functions. For a more complete list of integrals, please see table of integrals and list of integrals.

<math>\int (ax + b)^n dx</math> <math> = \frac{(ax + b)^{n+1}}{a(n + 1)} \qquad\mbox{(for } n\neq -1\mbox{)}\,\!</math>
<math>\int\frac{dx}{ax + b}</math> ax + b\right|</math>
<math>\int x(ax + b)^n dx</math> <math> = \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} \qquad\mbox{(for }n \not\in \{1, 2\}\mbox{)}</math>


<math>\int\frac{x dx}{ax + b}</math> ax + b\right|</math>
<math>\int\frac{x dx}{(ax + b)^2}</math>ax + b\right|</math>
<math>\int\frac{x dx}{(ax + b)^n}</math><math> = \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} \qquad\mbox{(for } n\not\in \{1, 2\}\mbox{)}</math>


<math>\int\frac{x^2 dx}{ax + b}</math>ax + b\right|\right)</math>
<math>\int\frac{x^2 dx}{(ax + b)^2}</math>ax + b\right| - \frac{b^2}{ax + b}\right)</math>
<math>\int\frac{x^2 dx}{(ax + b)^3}</math>ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right)</math>
<math>\int\frac{x^2 dx}{(ax + b)^n}</math><math> = \frac{1}{a^3}\left(-\frac{(ax + b)^{3-n}}{(n-3)} + \frac{2b (a + b)^{2-n}}{(n-2)} - \frac{b^2 (ax + b)^{1-n}}{(n - 1)}\right) \qquad\mbox{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>


<math>\int\frac{dx}{x(ax + b)}</math>\frac{ax+b}{x}\right|</math>
<math>\int\frac{dx}{x^2(ax+b)}</math>\frac{ax+b}{x}\right|</math>
<math>\int\frac{dx}{x^2(ax+b)^2}</math>\frac{ax+b}{x}\right|\right)</math>
<math>\int\frac{dx}{x^2+a^2}</math><math> = \frac{1}{a}\arctan\frac{x}{a}\,\!</math>
<math>\int\frac{dx}{x^2-a^2} = </math>
  • <math> -\frac{1}{a}\,\mathrm{arctanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} \qquad\mbox{(for }|x| < |a|\mbox{)}\,\!</math>
  • <math> -\frac{1}{a}\,\mathrm{arccoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} \qquad\mbox{(for }|x| > |a|\mbox{)}\,\!</math>


<math>\int\frac{dx}{ax^2+bx+c} =</math>
  • <math> \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>
  • <math> \frac{2}{\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>
  • <math> -\frac{2}{2ax+b}\qquad\mbox{(for }4ac-b^2=0\mbox{)}</math>
<math>\int\frac{x dx}{ax^2+bx+c}</math>ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c}</math>


<math>\int\frac{(mx+n) dx}{ax^2+bx+c} = </math>
  • <math>\frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>
  • <math>\frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>
  • <math> \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a(2ax+b)} \,\,\,\,\,\,\,\,\,\, \qquad\mbox{(for }4ac-b^2=0\mbox{)}</math>


<math>\int\frac{dx}{(ax^2+bx+c)^n} = \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}\,\!</math>
<math>\int\frac{x dx}{(ax^2+bx+c)^n} = \frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}\,\!</math>
<math>\int\frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{dx}{ax^2+bx+c}</math>


Any rational function can be integrated using above equations and partial fractions in integration, by decomposing the rational function into a sum of functions of the from:

<math>\frac{ex + f}{\left(ax^2+bx+c\right)^n}</math>.ar:قائمة بتكاملات التوابع المنطقة (التي تحتوي جذورا تربيعية و تكعيبية)

eo:Listo de integraloj de racionalaj funkcioj es:Lista de integrales de funciones racionales fr:Primitives de fonctions rationnelles gl:Lista de integrais de funcións racionais it:Tavola degli integrali indefiniti di funzioni razionali pt:Lista de integrais de funções racionais ru:Список интегралов от рациональных функций sr:Списак интеграла рационалних функција tr:Rasyonel Fonksiyonların İntegralleri vi:Danh sách tích phân với phân thức zh:積分表有理函數