Turbulence
From Free net encyclopedia
- For the film of the same name, see Turbulence
In fluid dynamics, turbulence or turbulent flow is a flow regime characterized by chaotic, stochastic property changes. This includes low momentum diffusion, high momentum convection, and rapid variation of pressure and velocity in space and time. Flow that is not turbulent is called laminar flow. The (dimensionless) Reynolds number characterizes whether flow conditions lead to laminar or turbulent flow; e.g. for pipe flow, a Reynolds number above about 2300 will be turbulent. The statistical description of turbulent flow was suggested by the Russian mathematician Andrey Kolmogorov; this description is known to be approximate at best.
Consider the flow of water over a simple smooth object, such as a sphere. At very low speeds the flow is laminar, i.e., the flow is smooth (though it may involve vortices on a large scale). As the speed increases, at some point the transition is made to turbulent ("chaotic") flow. In turbulent flow, unsteady vortices appear on many scales and interact with each other. Drag due to boundary layer skin friction increases. The structure and location of boundary layer separation often changes, sometimes resulting in a reduction of overall drag. Because laminar-turbulent transition is governed by Reynolds number, the same transition occurs if the size of the object is gradually increased, or the viscosity of the fluid is decreased, or if the density of the fluid is increased.
Turbulence causes the formation of eddies which are defined by the Kolmogorov length scale and a turbulent diffusion coefficient. In large bodies of water like oceans this coefficient can be found using Richardson's four-third power law and is governed by the random walk principle. In rivers and large ocean currents, the diffusion coefficient is given by variations of Elder's formula.
When designing piping systems, turbulent flow requires a higher input of energy from a pump (or fan) than laminar flow. However, for applications such as heat exchangers and reaction vessels, turbulent flow is essential for good heat transfer and mixing.
Examples of turbulence
- A jet exhausting from a nozzle into a quiescent fluid. As the flow emerges into this external fluid, shear layers originating at the lips of the nozzle are created. These layers separate the fast moving jet from the external fluid, and at a certain critical Reynolds number they become unstable and break down to turbulence.
- Smoke rising from a cigarette. for the first few centimetres it remains laminar, and then becomes unstable and turbulent. Similarly, the dispersion of pollutants in the atmosphere is governed by turbulent processes.
- Flow over a golf ball. (This can be best understood by considering the golf ball to be stationary, with air flowing over it.) If the golf ball were smooth, the boundary layer flow over the front of the sphere would be laminar at typical conditions. However, the boundary layer would separate early, as the pressure gradient switched from favorable (pressure decreasing in the flow direction) to unfavorable (pressure increasing in the flow direction), creating a large region of low pressure behind the ball that creates high form drag. To prevent this from happening, the surface is dimpled to perturb the boundary layer and promote transition to turbulence. This results in higher skin friction, but moves the point of boundary layer separation further along, resulting in lower form drag and lower overall drag.
- The mixing of warm and cold air in the atmosphere by wind, which causes poor astronomical seeing (the blurring of images seen through the atmosphere)
- Most of the terrestrial atmospheric circulation
- The oceanic and atmospheric mixed layers and intense oceanic currents.
- The flow conditions in many industrial equipment (such as pipes, ducts, precipitators, gas scrubbers, etc.) and machines (for instance, internal combustion engines and gas turbines).
- The external flow over all kind of vehicles such as cars, airplanes, ships and submarines.
- The motions of matter in stellar atmospheres.
According to an apocryphal story, Werner Heisenberg was asked what he would ask God, given the opportunity. His reply was: "When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first." A similar witticism has been attributed to Horace Lamb (who had published a noted text book on Hydrodynamics)—his choice being quantum mechanics (instead of relativity) and turbulence. Lamb was quoted as saying in a speech to the British Association for the Advancement of Science, "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic."
See also
- Astronomical seeing
- Clear-Air Turbulence
- Downdrafts
- Fluid dynamics
- Mesocyclones
- Vortex
- Vortex generator
- Chaos theory
- Wingtip vortices
- Wake turbulence
- Swing bowling
- Velocimetry
External links
- Center for Turbulence Research, Stanford University
- Journal of Turbulence, Institute of Physics
- Scientific American article
- Air Turbulence Forecastcs:Turbulentní proudění
da:Turbulens de:Turbulenz fr:Turbulence es:Turbulencia it:flusso turbolento ms:Gelora nl:Turbulente stroming ja:乱気流 pl:Turbulencja pt:Turbulência sl:Turbulentni tok fi:Turbulenssi sv:Turbulens zh:湍流