Sputtering

From Free net encyclopedia

Revision as of 00:58, 5 April 2006; view current revision
←Older revision | Newer revision→

Sputtering is a physical process whereby atoms in a solid target material are ejected into the gas phase due to bombardment of the material by energetic ions. It is commonly used for thin-film deposition, as well as analytical techniques (see below).

Sputtering is largely driven by momentum exchange between the ions and atoms in the material, due to collisions. The process can be thought of as atomic billiards, with the ion (cue ball) striking a large cluster of close-packed atoms (billiard balls). Although the first collision pushes atoms deeper into the cluster, subsequent collisions between the atoms can result in some of the atoms near the surface being ejected away from the cluster. The number of atoms ejected from the surface per incident ion is called the sputter yield and is an important measure of the efficiency of the sputtering process. Other things the sputter yield depends on are the energy of the incident ions, the masses of the ions and target atoms, and the binding energy of atoms in the solid.

The ions for the sputtering process are supplied by a plasma that is induced in the sputtering equipment. In practice a variety of techniques are used to modify the plasma properties, especially ion density, to achieve the optimum sputtering conditions, including usage of RF (radio frequency) alternating current, utilization of magnetic fields, and application of a bias voltage to the target.

Contents

Sputter deposition

Image:Sputtering.gif

Sputtered atoms ejected into the gas phase are not in their thermodynamic equilibrium state. Deposition of the sputtered material tends to occur on all surfaces inside the vacuum chamber. Sputtering is used extensively in the semiconductor industry to deposit thin films of various materials in integrated circuit processing. Thin antireflection coatings on glass for optical applications are also deposited by sputtering. Because of the low substrate temperatures used, sputtering is an ideal method deposit contact metals for thin-film transistors. Perhaps the most familiar products of sputtering are low-emissivity coatings on glass, used in double-pane window assemblies. The coating is a multilayer containing silver and metal oxides such as zinc oxide, tin oxide, or titanium dioxide.

Comparison with other deposition methods

One important advantage of sputtering as a deposition technique is that the deposited films have the same composition as the source material. The equality of the film and target stoichiometry might be surprising since the sputter yield depends on the atomic weight of the atoms in the target. One might therefore expect one component of an alloy or mixture to sputter faster than the other components, leading to an enrichment of that component in the deposit. However, since only surface atoms can be sputtered, the faster ejection of one element leaves the surface enriched with the others, effectively counteracting the difference in sputter rates. In contrast with thermal evaporation techniques one component of the source may have a higher vapor pressure, resulting in a deposited film with a different composition than the source.

Image:Autarget mod.jpg

Sputter deposition also has an advantage over molecular beam epitaxy (MBE) due to its speed. The higher rate of deposition results in lower impurity incorporation because fewer impurities are able to reach the surface of the substrate in the same amount of time. Sputtering methods are consequently able to use process gases with far higher impurity concentrations than the vacuum pressure that MBE methods can tolerate. During sputter deposition the substrate may be bombarded by energetic ions and neutral atoms. Ions can be deflected with a substrate bias and neutral bombardment can be minimized by off-axis sputtering, but only at a cost in deposition rate. Plastic substrates cannot tolerature the bombardment and are usually coated via evaporation.

Types of sputter deposition

Sputter guns are usually magnetrons that depend on strong electric and magnetic fields. The sputter gas is inert, typically argon. The sputtering process can be disrupted by other electric or magnetic fields in the vicinity of the target. Charge build-up on insulating targets can be avoided with the use of RF sputtering where the sign of the anode-cathode bias is varied at a high rate. RF sputtering works well to produce highly insulating oxide films but only with the added expense of RF power supplies and impedance matching networks. Stray magnetic fields leaking from ferromagnetic targets also disturb the sputtering process. Specially designed sputter guns with unusually strong permanent magnets must often be used in compensation.

Image:Magnetrongun.jpg


Ion-beam sputtering (IBS) is a method in which the target is external to the ion source. In a Kaufman source ions are generated by collisions with electrons that are confined by a magnetic field as in a magnetron. They are then accelerated by the electric field emanating from a grid toward a target. As the ions leave the source they are neutralized by electrons from a second external filament. IBS has an advantage in that the energy and flux of ions can be controlled independently. Since the flux that strikes the target is composed of neutral atoms, either insulating or conducting targets can be sputtered. IBS has found application in the manufacture of thin-film heads for disk drives. The principal drawback of IBS is the large amount of maintenance required to keep the ion source operating.

Reactive sputtering refers to a technique where the deposited film is formed by chemical reaction between the target material and a gas which is introduced into the vacuum chamber. Oxide and nitride films are often fabricated using reactive sputtering. The composition of the film can be controlled by varying the relative pressures of the inert and reactive gases. Film stoichiometry is an important parameter for optimizing functional properties like the stress in SiNx and the index of refraction of SiOx. The transparent indium tin oxide conductor that is used in optoelectronics and solar cells is made by reactive sputtering.

In ion-assisted deposition (IAD) the substrate is exposed to a secondary ion beam operating at a lower power than the sputter gun. Usually a Kaufman source like that used in IBS supplies the secondary beam. IAD can be used to deposit carbon in diamond-like form on a substrate. Any carbon atoms landing on the substrate which fail to bond properly in the diamond crystal lattice will be knocked off by the secondary beam. NASA used this technique to experiment with depositing diamond films on turbine blades in the 1980's. IAS is used in other important industrial applications such as creating tetrahedral amorphous carbon surface coatings on hard disk platters and hard transition metal nitride coatings on medical implants.

Analysis

Another application of sputtering is to etch away the target material. One such example occurs in Secondary Ion Mass Spectroscopy (SIMS), where the target sample is sputtered at a constant rate. As the target is sputtered, the concentration and identity of sputtered atoms are measured using Mass Spectroscopy. In this way the composition of the target material can be determined and even extremely low concentrations (~2*10-6%) of impurities detected. Furthermore, because the sputtering continually etches deeper into the sample, concentration profiles as a function of depth can be measured.

Space

Sputtering is one of the forms of space weathering, a process that changes the physical and chemical properties of airless bodies, such as asteroids and our moon. It is also one of the possible ways that Mars has lost its atmosphere.

External links

es:Pulverización catódica it:Sputtering nl:Sputteren ja:スパッタリング zh:溅射