Matrix normal distribution

From Free net encyclopedia

Revision as of 19:34, 12 April 2006; view current revision
←Older revision | Newer revision→

The matrix normal distribution is a probability distribution that is a generalization of the normal distribution. The probability density function for the random matrix X (n × p) that follows the matrix normal distribution has the form

<math>

p(\mathbf{X}|\mathbf{M}, {\boldsymbol \Omega}, {\boldsymbol \Sigma}) =(2\pi)^{-np/2} |{\boldsymbol \Omega}|^{-p/2} |{\boldsymbol \Sigma}|^{-n/2} \exp\left( -\frac{1}{2} \mbox{tr}\left[ {\boldsymbol \Omega}^{-1} (\mathbf{X} - \mathbf{M}) {\boldsymbol \Sigma}^{-1} (\mathbf{X} - \mathbf{M})^{T} \right] \right). </math>

See also