Triangular distribution

From Free net encyclopedia

Revision as of 13:32, 12 April 2006; view current revision
←Older revision | Newer revision→

Template:Probability distribution{\sqrt{2}} & \mathrm{for\ } c\!\ge\!\frac{b\!-\!a}{2}\\ & \\

                   b-\frac{\sqrt{(b-a)(b-c)}}{\sqrt{2}} & \mathrm{for\ } c\!\le\!\frac{b\!-\!a}{2} 
                 \end{matrix}
               \right.
             </math>|
 mode       =<math>c\,</math>|
 variance   =<math>\frac{a^2+b^2+c^2-ab-ac-bc}{18}</math>|
 skewness   =<math>
             \frac{\sqrt 2 (a\!+\!b\!-\!2c)(2a\!-\!b\!-\!c)(a\!-\!2b\!+\!c)}{5(a^2\!+\!b^2\!+\!c^2\!-\!ab\!-\!ac\!-\!bc)^\frac{3}{2}}
             </math>|
 kurtosis   =<math>\frac{12}{5}</math>|
 entropy    =<math>\frac{1}{2}+\ln\left(\frac{b-a}{2}\right)</math>|
 mgf        =<math>2\frac{(b\!-\!c)e^{at}\!-\!(b\!-\!a)e^{ct}\!+\!(c\!-\!a)e^{bt}}

{(b-a)(c-a)(b-c)t^2}</math>|

 char       =<math>-2\frac{(b\!-\!c)e^{iat}\!-\!(b\!-\!a)e^{ict}\!+\!(c\!-\!a)e^{ibt}}

{(b-a)(c-a)(b-c)t^2}</math>| }}

In probability theory and statistics, the triangular distribution is a continuous probability distribution with lower limit a, mode c and upper limit b.

<math>f(x|a,b,c)=\left\{

                     \begin{matrix}
                         \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\
                         \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b
                     \end{matrix}
                 \right.
             </math>

The distribution simplifies when c=a or c=b. For example, if a=0, b=1 and c=1, then the equations above become:

<math> \left.\begin{matrix}f(x) &=& 2x \\ \\ F(x) &=& x^2 \end{matrix}\right\} \mathrm{for\ } 0 \le x \le 1 </math>
<math> \begin{matrix}
 E(X) &=& \frac{2}{3} \\ & & \\
 \mathrm{Var}(X) &=& \frac{1}{18}

\end{matrix} </math>

This distribution for a=0, b=1 and c=0.5 is distribution of <math>X = \frac{X_1+X_2}{2} </math>, where <math>X_1, X_2 </math> are two random variables with standard uniform distribution.

<math>
 f(x)=\left\{\begin{matrix}
 4x   & \mathrm{for\ }0 \le x < \frac{1}{2}   \\ \\
 2-4x & \mathrm{for\ }\frac{1}{2} \le x \le 1
 \end{matrix}\right.

</math>

<math>
 F(x)=\left\{\begin{matrix}
 2x^2       & \mathrm{for\ }0 \le x < \frac{1}{2}     \\ \\
 1-2(1-x)^2 & \mathrm{for\ }\frac{1}{2} \le x \le 1
 \end{matrix}\right.

</math>

<math> \begin{matrix}
 E(X) &=& \frac{1}{2} \\ \\
 \mathrm{Var}(X) &=& \frac{1}{24}

\end{matrix} </math>

Use of the distribution

The Triangular Distribution is typically used as a subjective description of a population for which there is only limited sample data, and especially in cases where the relationship between variables is known but data is scarce (possibly because of the high cost of collection). It is based on a knowledge of the minimum and maximum and an "inspired guess" as to the modal value.

The Triangular distribution is therefore often used in business decision making, particularly in simulations. Generally, when not much is known about the distribution of an outcome, (say, only its smallest and largest values) it is possible to use the uniform distribution. But if the one also knows the most likely outcome, then the outcome might be simulated best by a Triangular distribution.

The Triangular distribution, along with the Beta distribution, is also widely used in project management (see PERT and CPM) to model events which take place within an interval defined by a minimum and maximum value.

External links and references