Uniform absolute continuity
From Free net encyclopedia
Revision as of 14:09, 8 February 2005; view current revision
←Older revision | Newer revision→
←Older revision | Newer revision→
In mathematical analysis, a collection <math>\mathcal{F}</math> of real-valued and integrable functions is uniformly absolutely continuous, if for every
- <math>\epsilon > 0</math>
there exists
- <math> \delta>0 </math>
such that for any measurable set <math>E</math>, <math>\mu(E)<\delta</math> implies
- <math> \int_E |f| d\mu < \epsilon </math>
for all <math> f\in \mathcal{F} </math>.
[edit]
See also
[edit]
References
- J. J. Benedetto (1976). Real Variable and Integration - section 3.3, p. 89. B. G. Teubner, Stuttgart. ISBN 3-519-02209-5
- C. W. Burrill (1972). Measure, Integration, and Probability - section 9-5, p. 180. McGraw-Hill. ISBN 0070092230