Poisson manifold
From Free net encyclopedia
←Older revision | Newer revision→
In mathematics, a Poisson manifold is a differential manifold M such that the algebra of smooth functions over it, <math>C^\infty(M)</math> is equipped with a bilinear map called the Poisson bracket, turning it into a Poisson algebra.
Every symplectic manifold is a Poisson manifold but not vice versa.
Contents |
Definition
A Poisson structure on M is the bilinear map
- <math>\{,\}_M:C^\infty(M) \times C^\infty(M) \to C^\infty(M)</math>
such that the bracket is skew symmetric:
- <math>\{f,g\}=-\{g,f\}</math>
obeys the Jacobi identity:
- <math>\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0</math>
and is a derivation:
- <math>\{fg,h\}=f\{g,h\} + \{f,h\}g</math>
for all <math>f,g,h \in C^\infty(M)</math>
The last property allows several equivalent formulations. Fixing an element <math>g \in C^\infty(M)</math>, one has that the map <math>f\mapsto \{g,f\}</math> is a derivation on <math>C^\infty(M)</math>. This implies the existence of a Hamiltonian vector field <math>X_g</math> on M such that
- <math>X_g(f) = \{f,g\}</math>
for all <math>f \in C^\infty(M)</math>. This implies that the bracket depends only on the differential of g, and because its skew-symmetric, it depends only on the differential of f. Thus, associated with any Poisson map is a map from the cotangent bundle <math>T^*M</math> to the tangent bundle <math>TM</math>
- <math>B_M:T^*M\to TM</math>
which maps as <math>B_M(df) = X_f</math>.
Poisson bivector
The map between the cotangent and tangent bundles implies the existence of a bivector field <math>\eta_M</math> on M, the Poisson bivector, a skew-symmetric 2-tensor <math>\eta_M\in \bigwedge^2 TM</math>, such that
- <math>\{f,g\}_M = \langle df\otimes dg, \eta_M \rangle </math>
where <math>\langle , \rangle</math> is the pairing between the tangent bundle and its dual. Conversely, a smooth bivector field η on M which obeys the Jacobi identity can be used to give the manifold a Poisson structure.
In local coordinates, the bivector at point <math>x=(x_1,\ldots,x_m)</math> has the expression
- <math>\eta_x=\sum_{i,j=1}^m \eta_{ij}(x)
\frac {\partial}{\partial x_i} \otimes \frac {\partial}{\partial x_j}</math>
so that
- <math>\{f,g\}(x)=\sum_{i,j=1}^m \eta_{ij}(x)
\frac {\partial f}{\partial x_i} \otimes \frac {\partial g}{\partial x_j}</math>
For a symplectic manifold, η is nothing other than the inverse of the symplectic form ω, which exists because it is nondegenerate. The difference between a symplectic manifold and a Poisson manifold is that the symplectic form must be nowhere singular, whereas the Poisson bivector may vanish. When the Poisson bivector is zero everywhere, the manifold is said to possess the trivial Poisson structure.
Poisson map
A Poisson map is defined as a smooth map <math>\phi:M\to N</math>, which maps the Poisson manifold M to the Poisson manifold N, in such a way that the product structure is preserved:
- <math>\{f_1,f_2\}_N \circ \phi = \{f_1\circ \phi, f_2 \circ \phi\}_M</math>
where <math>\{,\}_M</math> and <math>\{,\}_N</math> are the Poisson brackets on M and N respectively.
Product manifold
Given two Poisson manifolds M and N, a Poisson bracket may be defined on the product manifold. Letting <math>f_1</math> and <math>f_2</math> be two smooth functions defined on the product manifold <math>M\times N</math>, one defines the Poisson bracket <math>\{\,,\,\}_{M\times N}</math> on the product manifold in terms of the brackets <math>\{\,,\,\}_{M}</math> and <math>\{\,,\,\}_{N}</math> on each of the individual manifolds:
- <math>\{f_1,f_2\}_{M\times N}(x,y)
= \{f_1 (x, \cdot), f_2(x, \cdot)\}_N (y) + \{f_1 (\cdot, y), f_2(\cdot, y)\}_M (x)</math>
where <math>x\in M</math> and <math>y\in N</math> are held constant; that is, so that when
- <math>f(\cdot,\cdot):M\times N\to\mathbb{R}</math>
then
- <math>f(x,\cdot):N\to\mathbb{R}</math>
and
- <math>f(\cdot, y):M\to\mathbb{R}</math>
is implied.
Symplectic leaves
A Poisson manifold can be split into a collection of symplectic leaves. Each leaf is a submanifold of the Poisson manifold, and each leaf is a symplectic manifold itself. Two points lie in the same leaf if they are joined by the integral curve of a Hamiltonian vector field. That is, the integral curves of the Hamiltonian vector fields define an equivalence relation on the manifold. The equivalence classes of this relation are the symplectic leaves.
Example
If <math>\mathfrak{g}</math> is a finite-dimensional Lie algebra, and <math>\mathfrak{g}^*</math> is its dual vector space, then the Lie bracket induces a Poisson structure on <math>\mathfrak{g}^*</math>. Thus, letting <math>f_1</math> and <math>f_2</math> be functions on <math>\mathfrak{g}^*</math>, and <math>x\in \mathfrak{g}^*</math> a point, one may define
- <math>\{f_1,f_2\}(x) =
\langle \;\left[(df_1)_x, (df_2)_x \right] \,, x \rangle</math>
where <math>df \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}</math>, and <math>[,]</math> is the Lie bracket. If <math>e_k</math> are the local coordinates on the Lie algebra <math>\mathfrak{g}</math>, then the Poisson bivector is given by
- <math>\eta_{ij}(x) = \sum_k c_{ij}^k \langle x, e_k\rangle</math>
where the <math> c_{ij}^k</math> are the structure constants of the Lie algebra.
Complex structure
A complex Poisson manifold is a Poisson manifold with a complex or almost complex structure J such that the complex structure preserves the bivector:
- <math>\left(J \otimes J\right)(\eta) = \eta</math>
The symplectic leaves of a complex Poisson manifold are pseudo-Kähler manifolds.
See also
References
- A. Lichnerowicz, "Les variétès de Poisson et leurs algèbres de Lie associées", J. Diff. Geom. 12 (1977), 253-300.
- A. A. Kirillov, "Local Lie algebras", Russ. Math. Surv. 31 (1976), 55-75.
- V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press 1984.
- P. Liberman, C.-M. Marle, Symplectic geometry and analytical mechanics, Reidel 1987.
- K. H. Bhaskara, K. Viswanath, Poisson algebras and Poisson manifolds, Longman 1988, ISBN 0582019893.
- I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, 1994.de:Poisson-Mannigfaltigkeit