Cauchy principal value
From Free net encyclopedia
In mathematics, the Cauchy principal value of certain improper integrals is defined as either
- the finite number
- <math>\lim_{\varepsilon\rightarrow 0+} \left[\int_a^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^c f(x)\,dx\right]</math>
- where b is a point at which the behavior of the function f is such that
- <math>\int_a^b f(x)\,dx=\pm\infty</math>
- for any a < b and
- <math>\int_b^c f(x)\,dx=\mp\infty</math>
- for any c > b (one sign is "+" and the other is "−").
or
- the finite number
- <math>\lim_{a\rightarrow\infty}\int_{-a}^a f(x)\,dx</math>
- where
- <math>\int_{-\infty}^0 f(x)\,dx=\pm\infty</math>
- and
- <math>\int_0^\infty f(x)\,dx=\mp\infty</math>
- (again, one sign is "+" and the other is "−").
In some cases it is necessary to deal simultaneously with singularities both at a finite number b and at infinity. This is usually done by a limit of the form
- <math>\lim_{\varepsilon \rightarrow 0+}\int_{b-\frac{1}{\varepsilon}}^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^{b+\frac{1}{\varepsilon}}f(x)\,dx.</math>
Nomenclature
The Cauchy principal value of a function <math>f</math> can take on several nomenclatures, varying for different authors. These include (but are not limited to): <math>PV \int f(x)dx</math>, <math>P</math>, P.V., <math>\mathcal{P}</math>, <math>P_v</math>, <math>(CPV)</math> and V.P..
Examples
Consider the difference in values of two limits:
- <math>\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_a^1\frac{dx}{x}\right)=0,</math>
- <math>\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_{2a}^1\frac{dx}{x}\right)=-\log_e 2.</math>
The former is the Cauchy principal value of the otherwise ill-defined expression
- <math>\int_{-1}^1\frac{dx}{x}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).</math>
Similarly, we have
- <math>\lim_{a\rightarrow\infty}\int_{-a}^a\frac{2x\,dx}{x^2+1}=0,</math>
but
- <math>\lim_{a\rightarrow\infty}\int_{-2a}^a\frac{2x\,dx}{x^2+1}=-\log_e 4.</math>
The former is the principal value of the otherwise ill-defined expression
- <math>\int_{-\infty}^\infty\frac{2x\,dx}{x^2+1}{\ }
\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).</math>
These pathologies do not afflict Lebesgue-integrable functions, that is, functions the integrals of whose absolute values are finite.
Distribution theory
Let <math>C_0^\infty(\mathbb{R})</math> be the set of smooth functions with compact support on the real line <math>\mathbb{R}.</math> Then, the map
- <math>{p.\!v.}\left(\frac{1}{x}\right)\,: C_0^\infty(\mathbb{R}) \to \mathbb{C}</math>
defined via the Cauchy principal value as
- <math> \operatorname{p.\!v.}\left(\frac{1}{x}\right)(u)=\lim_{\varepsilon\to 0+} \int_{| x|>\varepsilon} \frac{u(x)}{x} dx</math> for <math>u\in C_0^\infty(\mathbb{R})</math>
is a distribution.