Cesàro summation
From Free net encyclopedia
In mathematical analysis, Cesàro summation is an alternative means of assigning a sum to an infinite series. If the series converges in the usual sense to a sum α, then the series is also Cesàro summable and has Cesàro sum α. The significance of Cesàro summation is that a series which diverges may still have a well-defined Cesàro sum.
Cesàro summation is named for the Italian analyst Ernesto Cesàro (1859-1906).
Definition
Let {an} be a sequence, and let
- <math>s_k = a_1 + \cdots + a_k</math>
be the kth partial sum of the series
- <math>\sum_{n=1}^\infty a_n</math>.
The sequence {an} is called Cesàro summable, with Cesàro sum α, if
- <math>\lim_{n\to\infty} \frac{s_1 + \cdots + s_n}{n} = \alpha</math>.
Examples
Let an = (-1)n+1 for n ≥ 1. That is, {an} is the sequence
- <math>1, -1, 1, -1, \ldots</math>.
Then the sequence of partial sums {sn} is
- <math>1, 0, 1, 0, \ldots</math>,
so that the series clearly does not converge. On the other hand, the terms of the sequence {(s1 + ... + sn)/n} are
- <math>\frac{1}{1}, \,\frac{1}{2}, \,\frac{2}{3}, \,\frac{2}{4}, \,\frac{3}{5}, \,\frac{3}{6}, \,\frac{4}{7}, \,\frac{4}{8}, \,\ldots</math>,
so that
- <math>\lim_{n\to\infty} \frac{s_1 + \cdots + s_n}{n} = 1/2</math>.
Therefore the Cesàro sum of the sequence {an} is 1/2.