Ceva's theorem

From Free net encyclopedia

Image:Ceva's theorem 1.png

Image:Ceva's theorem 2.png

Ceva's theorem is a very popular theorem in elementary geometry. Given a triangle ABC, and points D, E, and F that lie on lines BC, CA, and AB respectively, the theorem states that lines AD, BE and CF are concurrent if and only if

<math>\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.</math>

There is also an equivalent trigonometric form of Ceva's Theorem, that is, AD,BE,CF concur iff <math>\frac{\sin\angle BAD}{\sin\angle CAD}\times\frac{\sin\angle ACF}{\sin\angle BCF}\times\frac{\sin\angle CBE}{\sin\angle ABE}=1</math>.

It was first proven by Giovanni Ceva in his 1678 work De lineis rectis.

Proof

Suppose <math>AD</math>, <math>BE</math> and <math>CF</math> intersect at a point <math>O</math>. Because <math>\triangle BOD</math> and <math>\triangle COD</math> have the same height, we have

<math>\frac{|\triangle BOD|}{|\triangle COD|}=\frac{BD}{DC}.</math>

Similarly,

<math>\frac{|\triangle BAD|}{|\triangle CAD|}=\frac{BD}{DC}.</math>

From this it follows that

<math>\frac{BD}{DC}= \frac{|\triangle BAD|-|\triangle BOD|}{|\triangle CAD|-|\triangle COD|} =\frac{|\triangle ABO|}{|\triangle CAO|}.</math>

Similarly,

<math>\frac{CE}{EA}=\frac{|\triangle BCO|}{|\triangle ABO|},</math>
and
<math>\frac{AF}{FB}=\frac{|\triangle CAO|}{|\triangle BCO|}.</math>

Multiplying these three equations gives

<math>\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1,</math>

as required. Conversely, suppose that the points <math>D</math>, <math>E</math> and <math>F</math> satisfy the above equality. Let <math>AD</math> and <math>BE</math> intersect at <math>O</math>, and let <math>CO</math> intersect <math>AB</math> at <math>F'</math>. By the direction we have just proven,

<math>\frac{AF'}{F'B} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.</math>

Comparing with the above equality, we obtain

<math>\frac{AF'}{F'B}=\frac{AF}{FB}.</math>

Adding 1 to both sides and using <math>AF'+F'B=AF+FB=AB</math>, we obtain

<math>\frac{AB}{F'B}=\frac{AB}{FB}.</math>

Thus <math>F'B=FB</math>, so that <math>F</math> and <math>F'</math> coincide (recalling that the distances are directed). Therefore <math>AD</math>, <math>BE</math> and <math>CF</math>=<math>CF'</math> intersect at <math>O</math>, and both implications are proven.

See also

External links

fr:Théorème de Ceva ko:체바의 정리 it:Teorema di Ceva ja:チェバの定理 pl:Twierdzenie Cevy ru:Теорема Чевы sl:Cevov izrek fi:Cevan lause zh:塞瓦定理