Chebyshev's sum inequality
From Free net encyclopedia
- Another article treats Chebyshev's inequality in probability theory.
In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, states that if
- <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>
and
- <math>b_1 \geq b_2 \geq \cdots \geq b_n,</math>
then
- <math>n \sum_{k=1}^n a_kb_k \geq \left(\sum_{k=1}^n a_k\right)\left(\sum_{k=1}^n b_k\right).</math>
Similarly, if
- <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>
and
- <math>b_1 \leq b_2 \leq \cdots \leq b_n,</math>
then
- <math>n \sum_{k=1}^n a_kb_k \leq \left(\sum_{k=1}^n a_k\right)\left(\sum_{k=1}^n b_k\right).</math>
Chebyshev's sum inequality follows from the rearrangement inequality.
There is also a continuous version of Chebyshev's inequality:
If f and g are real-valued, integrable functions over [0,1], both increasing or both decreasing, then
- <math> \int fg \geq \int f \int g.\, </math>
This can be generalized to integrals over any space, as well as products of countable integrals.cs:Čebyševova nerovnost pro konečné součty de:Tschebyschow-Summenungleichung pl:Tożsamość Czebyszewa zh:切比雪夫總和不等式