Chernoff's inequality
From Free net encyclopedia
In probability theory, Chernoff's inequality, named after Herman Chernoff, states the following. Let
- <math>X_1,X_2,...,X_n</math>
be independent random variables, such that
- <math>E[X_i]=0</math>
and
- <math>\left|X_i\right|\leq 1</math> for all <math>i</math>.
Let
- <math>X=\sum_{i=1}^n X_i</math>
and let <math>\sigma^2</math> be the variance of <math>X</math>. Then
- <math>P(\left|X\right|\geq k\sigma)\leq 2e^{-k^2/4}</math>
for any
- <math>0 \leq k \leq 2 \sigma</math>
[edit]
See also
- Chernoff bound: a special case of this inequalityde:Chernoff-Ungleichung