E6 (mathematics)
From Free net encyclopedia
In mathematics, E6 is the name of some Lie groups and also their Lie algebras <math>\mathfrak{e}_6</math>. It is one of the five exceptional compact simple Lie groups as well as one of the simply laced groups. E6 has rank 6 and dimension 78. Its center is the cyclic group Z3. Its outer automorphism group is the cyclic group Z2. Its fundamental representation is 27-dimensional (complex). The dual representation, which is inequivalent, is also 27-dimensional.
A certain noncompact real form of E6 is the group of collineations (line-preserving transformations) of the octonionic projective plane OP2. It is also the group of determinant-preserving linear transformations of the exceptional Jordan algebra. The exceptional Jordan algebra is 27-dimensional, which explains why the compact real form of E6 has a 27-dimensional complex representation. The compact real form of E6 is the isometry group of a 32-dimensional Riemannian manifold known as the 'bioctonionic projective plane'. Altogether there are 5 real forms and one complex form.
In particle physics, E6 plays a role in some grand unified theories.
Contents |
Algebra
Dynkin diagram
Roots of E6
Although they span a six-dimensional space, it's much more symmetrical to consider them as vectors in a six-dimensional subspace of a nine-dimensional space.
- (1,−1,0;0,0,0;0,0,0), (−1,1,0;0,0,0;0,0,0),
- (−1,0,1;0,0,0;0,0,0), (1,0,−1;0,0,0;0,0,0),
- (0,1,−1;0,0,0;0,0,0), (0,−1,1;0,0,0;0,0,0),
- (0,0,0;1,−1,0;0,0,0), (0,0,0;−1,1,0;0,0,0),
- (0,0,0;−1,0,1;0,0,0), (0,0,0;1,0,−1;0,0,0),
- (0,0,0;0,1,−1;0,0,0), (0,0,0;0,−1,1;0,0,0),
- (0,0,0;0,0,0;1,−1,0), (0,0,0;0,0,0;−1,1,0),
- (0,0,0;0,0,0;−1,0,1), (0,0,0;0,0,0;1,0,−1),
- (0,0,0;0,0,0;0,1,−1), (0,0,0;0,0,0;0,−1,1),
All 27 combinations of <math>(\bold{3};\bold{3};\bold{3})</math> where <math>\bold{3}</math> is one of <math>\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right)</math>, <math>\left(-\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right)</math>, <math>\left(-\frac{1}{3},-\frac{1}{3},\frac{2}{3}\right)</math>
All 27 combinations of <math>(\bold{\bar{3}};\bold{\bar{3}};\bold{\bar{3}})</math> where <math>\bold{\bar{3}}</math> is one of <math>(-\frac{2}{3},\frac{1}{3},\frac{1}{3})</math>, <math>(\frac{1}{3},-\frac{2}{3},\frac{1}{3})</math>, <math>(\frac{1}{3},\frac{1}{3},-\frac{2}{3})</math>
Simple roots
- (0,0,0;0,0,0;0,1,−1)
- (0,0,0;0,0,0;1,−1,0)
- (0,0,0;0,1,−1;0,0,0)
- (0,0,0;1,−1,0;0,0,0)
- (0,1,−1;0,0,0;0,0,0)
- <math>\left(\frac{1}{3},-\frac{2}{3},\frac{1}{3};-\frac{2}{3},\frac{1}{3},\frac{1}{3};-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right)</math>
Weyl/Coxeter group
Its Weyl/Coxeter group is symmetry group of the E6 polytope.
Cartan matrix
- <math>
\begin{pmatrix} 2&-1&0&0&0&0\\ -1&2&-1&0&0&0\\ 0&-1&2&-1&-1&0\\ 0&0&-1&2&0&0\\ 0&0&-1&0&2&-1\\ 0&0&0&0&-1&2 \end{pmatrix} </math>
E6 polytope
The E6 polytope is the convex hull of the roots of E6. It therefore exists in 6 dimensions; its symmetry group is the Coxeter group for E6.
References
- John Baez, The Octonions, Section 4.4: E6, Bull. Amer. Math. Soc. 39 (2002), 145-205. Online HTML version at [1].
See also
E6 | E7 | E8 | F4 | G2 |