Electron transport chain

From Free net encyclopedia

Image:Etc2.png Electron transport chains (also called electron transfer chains) are biochemical reactions that produce ATP, which is the energy currency of life. Only two sources of energy are available to living organisms: oxidation-reduction (redox) reactions and sunlight (photosynthesis). Organisms that use redox reactions to produce ATP are called chemotrophs. Organisms that use sunlight are called phototrophs. Both chemotrophs and phototrophs use electron transport chains to convert energy into ATP.

Contents

Background

ATP is made by an enzyme called ATP synthase. The structure of this enzyme and its underlying genetic code is remarkably similar in all known forms of life.

ATP synthase is powered by a transmembrane electrochemical potential gradient, usually in the form of a proton gradient. The function of the electron transport chain is to produce this gradient. In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential gradient.

Redox reactions are chemical reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs free energy of the reactants and products. The Gibbs free energy is the energy available (“free”) to do work. Any reaction that decreases the overall Gibbs free energy of a system will proceed spontaneously.

The transfer of electrons from a high-energy molecule (the donor) to a lower-energy molecule (the acceptor) can be spatially separated into a series of intermediate redox reactions. This is an electron transport chain.

The fact that a reaction is thermodynamically possible does not mean that it will actually occur. A mixture of hydrogen gas and oxygen gas does not spontaneously ignite. It is necessary either to supply an activation energy, or to lower the intrinsic activation energy of the system, in order to make most biochemical reactions proceed at a useful rate. Living systems use complex macromolecular structures (enzymes) to lower the activation energies of biochemical reactions.

It is possible to couple a thermodynamically favorable reaction (a transition from a high-energy state to a lower-energy state) to a thermodynamically unfavorable reaction (such as a separation of charges, or the creation of an osmotic gradient), in such a way that the overall free energy of the system decreases (making it thermodynamically possible), while useful work is done at the same time. Biological macromolecules that catalyze a thermodynamically favorable reaction if and only if a thermodynamically unfavorable reaction occurs simultaneously underlie all known forms of life.

Electron transport chains produce energy in the form of a transmembrane electrochemical potential gradient. This energy is used to do useful work. The gradient can be used to transport molecules across membranes. It can be used to do mechanical work, such as rotating bacterial flagella. It can be used to produce ATP and NADH, high-energy molecules that are necessary for growth.

A small amount of ATP is available from substrate-level phosphorylation (for example, in glycolysis). Some organisms can obtain ATP exclusively by fermentation. In most organisms, however, the majority of ATP is generated by electron transport chains.

Electron transport chains in mitochondria

The cells of all eukaryotes (all animals, plants, fungi, algae – in other words, all living things except bacteria and archaea) contain intracellular organelles called mitochondria that produce ATP. Energy sources such as glucose are initially metabolized in the cytoplasm. The products are imported into mitochondria. Mitochondria continue the process of catabolism using metabolic pathways including the Krebs cycle, fatty acid oxidation and amino acid oxidation.

The end result of these pathways is the production of two energy-rich electron donors, NADH and FADH2. Electrons from these donors are passed through an electron transport chain to oxygen, which is reduced to water. This is a multi-step redox process that occurs on the mitochondrial inner membrane. The enzymes that catalyze these reactions have the remarkable ability to simultaneously create a proton gradient across the membrane, producing a thermodynamically unlikely high-energy state with the potential to do work.

The similarity between intracellular mitochondria and free-living bacteria is striking. The known structural, functional and DNA similarities between mitochondria and bacteria provide strong evidence that mitochondria evolved from intracellular prokaryotic symbionts that took up residence in primitive eukaryotic cells.

Mitochondrial redox carriers

Four membrane-bound complexes have been identified in mitochondria. Each is an extremely complex transmembrane structure that is embedded in the inner membrane. Three of them are proton pumps. The structures are electrically connected by lipid-soluble electron carriers and water-soluble electron carriers. The overall electron transport chain is:

              NADH Complex I Q Complex III cytochrome c  Complex IV O2 Complex II 
                                                 

Complex I

Complex I (NADH dehydrogenase; Template:EC number) removes two electrons from NADH and transfers them to a lipid-soluble carrier, ubiquinone (Q). The reduced product, ubiquinol (QH2) is free to diffuse within the membrane. At the same time, Complex I moves four protons (H+) across the membrane, producing a proton gradient.

Complex II

Complex II (succinate dehydrogenase; Template:EC number) is not a proton pump. It serves to funnel additional electrons into the quinone pool (Q) by removing electrons from succinate and transferring them (via FAD) to Q. Other electron donors (e.g. fatty acids and glycerol 3-phosphate) also funnel electrons into Q (via FAD), again without producing a proton gradient.

Complex III

Complex III (cytochrome bc1 complex; Template:EC number) removes in a stepwise fashion two electrons from QH2 and transfers them to two molecules of cytochrome c, a water-soluble electron carrier located on the outer surface of the membrane. At the same time, it moves four protons across the membrane, producing a proton gradient.

Complex IV

Complex IV (cytochrome c oxidase; Template:EC number) removes two electrons from two molecules of cytochrome c and transfers them to molecular oxygen, producing H2O. At the same time, it moves two protons across the membrane, producing a proton gradient.

Summary

The mitochondrial electron transport chain removes electrons from an electron donor (NADH or FADH2) and passes them to a terminal electron acceptor (O2) via a series of redox reactions. These reactions are coupled to the creation of a proton gradient across the mitochondrial inner membrane. There are three proton pumps: I, III and IV. The resulting transmembrane proton gradient is used to make ATP via ATP synthase.

The reactions catalyzed by Complex I and Complex III exist roughly at equilibrium. The steady-state concentrations of the reactants and products are approximately equal. This means that these reactions are readily reversible, simply by increasing the concentration of the products relative to the concentration of the reactants (for example, by increasing the proton gradient). ATP synthase is also readily reversible. Thus ATP can be used to make a proton gradient, which in turn can be used to make NADH. This process of reverse electron transport is important in many prokaryotic electron transport chains.


Electron transport chains in bacteria

In eukaryotes, NADH is the most important electron donor. The associated electron transport chain is

             NADH Complex I Q Complex III cytochrome c  Complex IV O2

where Complexes I, III and IV are proton pumps, while Q and cytochrome c are mobile electron carriers. The electron acceptor is molecular oxygen.

In prokaryotes (bacteria and archaea) the situation is more complicated, because there are a number of different electron donors and a number of different electron acceptors. The generalized electron transport chain in bacteria is:

                     Donor            Donor                    Donor                                                  
                       ↓                ↓                        ↓                                            
                 dehydrogenasequinone bc1 cytochrome 
                                        ↓                        ↓
                                oxidase(reductase)       oxidase(reductase)                   
                                        ↓                        ↓                                         
                                     Acceptor                 Acceptor                       
           

Note that electrons can enter the chain at three levels: at the level of a dehydrogenase, at the level of the quinone pool, or at the level of a mobile cytochrome electron carrier. These levels correspond to successively more positive redox potentials, or to successively decreased potential differences relative to the terminal electron acceptor. In other words, they correspond to successively smaller Gibbs free energy changes for the overall redox reaction Donor → Acceptor.

Individual bacteria use multiple electron transport chains, often simultaneously. Bacteria can use a number of different electron donors, a number of different dehydrogenases, a number of different oxidases and reductases, and a number of different electron acceptors. For example, E. coli (when growing aerobically using glucose as an energy source) uses two different NADH dehydrogenases and two different quinol oxidases, for a total of four different electron transport chains operating simultaneously.

A common feature of all electron transport chains is the presence of a proton pump to create a transmembrane proton gradient. Bacterial electron transport chains may contain as many as three proton pumps, like mitochondria, or they may contain only one or two. They always contain at least one proton pump.

Electron donors

In the present day biosphere, the most common electron donors are organic molecules. Organisms that use organic molecules as an energy source are called organotrophs. Organotrophs (animals, fungi, protists) and phototrophs (plants and algae) constitute the vast majority of all familiar life forms.

Some prokaryotes can use inorganic matter as an energy source. Such organisms are called lithotrophs (“rock-eaters”). Inorganic electron donors include hydrogen, carbon monoxide, ammonia, nitrite, sulfur, sulfide, and ferrous iron. Lithotrophs have been found growing in rock formations thousands of meters below the surface of the Earth. Because of their volume of distribution, lithotrophs may actually outnumber organotrophs and phototrophs in our biosphere.

Dehydrogenases

Bacteria can use a number of different electron donors. When organic matter is the energy source, the donor may be NADH or succinate, in which case electrons enter the electron transport chain via NADH dehydrogenase (similar to Complex I in mitochondria) or succinate dehydrogenase (similar to Complex II). Other dehydrogenases may be used to process different energy sources: formate dehydrogenase, lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, H2 dehydrogenase (hydrogenase) etc. Some dehydrogenases are also proton pumps; others simply funnel electrons into the quinone pool.

Most dehydrogenases are synthesized only when needed. Depending on the environment in which they find themselves, bacteria select different enzymes from their DNA library and synthesize only those that are needed for growth. Enzymes that are synthesized only when needed are said to be inducible.

Quinone carriers

Quinones are mobile, lipid-soluble carriers that shuttles electrons (and protons) between large, relatively immobile macromolecular complexes imbedded in the membrane. Bacteria use ubiquinone (the same quinone that mitochondria use) and related quinones such as menaquinone.

Proton pumps

A proton pump is any process that creates a proton gradient across a membrane. Protons can be physically moved across a membrane; this is seen in mitochondrial Complexes I and IV. The same effect can be produced by moving electrons in the opposite direction. The result is the disappearance of a proton from the cytoplasm and the appearance of a proton in the periplasm. Mitochondrial Complex III uses this second type of proton pump, which is mediated by a quinone (the Q cycle).

Some dehydrogenases are proton pumps; others are not. Most oxidases and reductases are proton pumps, but some are not. Cytochrome bc1 is a proton pump found in many, but not all, bacteria (it is not found in E. coli). As the name implies, bacterial bc1 is similar to mitochondrial bc1 (Complex III).

Proton pumps are the heart of the electron transport process. They produce the transmembrane electrochemical gradient that supplies energy to the cell.

Cytochrome electron carriers

Cytochromes are pigments that contain iron. They are found in two very different environments.

Some cytochromes are water-soluble carriers that shuttle electrons to and from large, immobile macromolecular structures imbedded in the membrane. The mobile cytochrome electron carrier in mitochondria is cytochrome c. Bacteria use a number of different mobile cytochrome electron carriers.

Other cytochromes are found within macromolecules such as Complex III and Complex IV. They also function as electron carriers, but in a very different, intramolecular, solid-state environment.

Electrons may enter an electron transport chain at the level of a mobile cytochrome or quinone carrier. For example, electrons from inorganic electron donors (nitrite, ferrous iron etc.) enter the electron transport chain at the cytochrome level. When electrons enter at a redox level greater than NADH, the electron transport chain must operate in reverse to produce this necessary, higher-energy molecule.

Terminal oxidases and reductases

When bacteria grow in aerobic environments, the terminal electron acceptor (O2) is reduced to water by an enzyme called an oxidase. When bacteria grow in anaerobic environments, the terminal electron acceptor is reduced by an enzyme called a reductase.

In mitochondria the terminal membrane complex (Complex IV) is cytochrome oxidase. Aerobic bacteria use a number of different terminal oxidases. For example, E. Coli does not have a cytochrome oxidase or a bc1 complex. Under aerobic conditions it uses two different terminal quinol oxidases (both proton pumps) to reduce oxygen to water.

Anaerobic bacteria, which do not use oxygen as a terminal electron acceptor, have terminal reductases individualized to their terminal acceptor. For example, E. coli can use fumarate reductase, nitrate reductase, nitrite reductase, DMSO reductase, or trimethylamine-N-oxide reductase, depending on the availability of these acceptors in the environment.

Most terminal oxidases and reductases are inducible. They are synthesized by the organism as needed, in response to specific environmental conditions.

Electron acceptors

Just as there are a number of different electron donors (organic matter in organotrophs, inorganic matter in lithotrophs), there are a number of different electron acceptors, both organic and inorganic. If oxygen is available, it is invariably used as the terminal electron acceptor, because it generates the greatest Gibbs free energy change and produces the most energy.

In anaerobic environments, different electron acceptors are used, including nitrate, nitrite, ferric iron, sulfate, carbon dioxide, and small organic molecules such as fumarate.

Since electron transport chains are redox processes, they can be described as the sum of two redox pairs. For example, the mitochondrial electron transport chain can be described as the sum of the NAD+/NADH redox pair and the O2/H2O redox pair. NADH is the electron donor and O2 is the electron acceptor.

Not every donor-acceptor combination is thermodynamically possible. The redox potential of the acceptor must be more positive than the redox potential of the donor. Furthermore, actual environmental conditions may be far different from standard conditions (1 molar concentrations, 1 atm partial pressures, pH = 7) which apply to standard redox potentials. For example, hydrogen-evolving bacteria grow at an ambient partial pressure of hydrogen gas of 10-4 atm. The associated redox reaction, which is thermodynamically favorable in nature, is thermodynamically impossible under “standard” conditions.

Summary

Bacterial electron transport pathways are, in general, inducible. Depending on their environment, bacteria can synthesize different transmembrane complexes and produce different electron transport chains in their cell membranes. Bacteria select their electron transport chains from a DNA library containing multiple possible dehydrogenases, terminal oxidases and terminal reductases. The situation is often summarized by saying that electron transport chains in bacteria are branched, modular and inducible.

Evolution of electron transport chains

The similarities in structure, function and genetic code between electron transport chains found in present-day eukarya, bacteria and archaea imply a common evolutionary origin. It is possible to make an educated guess as to the type of electron transport processes that must have preceded the evolution of eukarya, bacteria and archaea as separate domains of life. For example, the earliest organisms must have had a transmembrane potential gradient. There must have been an associated ATP-like molecule, and an associated ATP synthase. In principle, it is possible to extrapolate backwards from primitive electron transport chains to the origins of life itself. Such scenarios become increasingly plausible as more details become available. This is an area of active research.

Photosynthetic electron transport chains in chloroplasts

Mitochondria use organic molecules such as glucose as an energy source. The oxidation of organic molecules produces energy-rich electron donors (NADH and FADH2) which are the source of electrons entering the electron transport chain.

Where do organic molecules come from? Ultimately, from photosynthesis. The final energy source for all eukaryotic organisms, most bacteria and many archaea (in other words, for almost all present-day forms of life) is the energy of photons in sunlight. Chloroplasts synthesize organic matter from carbon dioxide and water, using the energy of sunlight.

A few present-day life forms (lithotrophs) use inorganic molecules as an energy source. The use of inorganic electron donors is of particular interest in the study of evolution, because this type of metabolism must logically have preceded the use of organic molecules as an energy source.

Chloroplasts

The cells of all plants and photosynthetic algae contain chloroplasts, which produce ATP and NADPH using the energy of sunlight. Like mitochondria, chloroplasts have a deep resemblance to certain prokaryotes, which suggests that chloroplasts originated as intracellular symbionts in primitive eukaryotic cells.

The electron transport chain in chloroplasts is contained in two extremely complex transmembrane structures, Photosystem II (PS II) and Photosystem I (PS I). PS II and PS I are linked by a transmembrane proton pump, cytochrome b6f, which is similar to mitochondrial Complex III. The similarity in structure, function, and genetic code implies a common evolutionary origin.

The overall process is the transfer of electrons from water to NADPH via a transmembrane proton pump:

                   H2O → PS II → plastoquinone → b6f → plastocyanin → PS I → NADPH 

The resulting transmembrane proton gradient is used to make ATP via ATP synthase. NADPH is used by the Calvin cycle to make organic molecules from CO2.

Photosystem II

PS II is an extremely complex, highly organized transmembrane structure that contains a water-splitting complex, chlorophylls a and b, a reaction center (P680), pheophytin (a pigment similar to chlorophyll), and two quinones. It uses the energy of sunlight to transfer electrons from water to a mobile electron carrier in the membrane called plastoquinone:

                     H2OP680P680*plastoquinone

Plastoquinone, in turn, transfers electrons to b6f, which feeds them into PS I.

The water-splitting complex

The step H2O → P680 is performed by a poorly-understood structure imbedded within PS II called the water-splitting complex or the oxygen-evolving complex. It catalyzes a reaction that splits water into electrons, protons and oxygen:

                          2H2O4H+ + 4e- + O2

The electrons are transferred to special chlorophyll molecules (imbedded in PS II) that are promoted to a higher-energy state by the energy of photons.

The light-harvesting system

The steps P680 → P680*occur in special chlorophyll molecules imbedded in PS II which absorb the energy of photons. Electrons within these molecules are promoted to a higher-energy state. This is one of two core processes in photosynthesis, and it occurs with astonishing efficiency (greater than 90%) because the energy of light is first harvested by antenna proteins and then transferred to special chlorophyll molecules.

Antenna proteins are complex structures imbedded in the membrane that absorb energy from sunlight and transfer it to special chlorophyll molecules in PS II. There are hundreds of antenna proteins for every PS II. The transfer process (exciton transfer) is extremely efficient, due to ability of antenna proteins to transfer their excitation energy to neighboring molecules in a quantum, all-or-none fashion. Most of the energy gathered by antenna proteins is ultimately transferred to special chlorophylls in PS II, which are promoted to a high-energy state.

The reaction center

The steps P680*→ plastoquinone occur within the reaction center of PS II. High-energy electrons are transferred to plastoquinone. Plastoquinone is then released into the membrane as a mobile electron carrier.

This is the second core process in photosynthesis. The initial stages occur within picoseconds, with an efficiency of 100%. The seemingly impossible efficiency is due to the precise positioning of molecules within the reaction center. This is a solid-state process, not a chemical reaction. It occurs within an essentially crystalline environment created by the macromolecular structure of PS II. The usual rules of chemistry (which involve random collisions and random energy distributions) do not apply in solid-state environments.

Summary

PS II is a transmembrane structure found in all chloroplasts. It splits water into electrons, protons and molecular oxygen. The electrons are transferred to plastoquinone, which carries them to a proton pump. Molecular oxygen is released into the atmosphere.

The emergence of such an incredibly complex structure, a macromolecule that converts the energy of sunlight into potentially useful work with efficiencies that are impossible in ordinary experience, seems almost magical at first glance. Thus it is of considerable interest that essentially the same structure is found in purple bacteria.

Cytochrome b6f

PS II and PS I are connected by a transmembrane proton pump, cytochrome b6f complex (plastoquinol—plastocyanin reductase; Template:EC number. Electrons from PS II are carried by plastoquinone to b6f, where they are removed in a stepwise fashion and transferred to a water-soluble electron carrier called plastocyanin. This redox process is coupled to the pumping of four protons across the membrane. The resulting proton gradient (together with the proton gradient produced by the water-splitting complex in PS II) is used to make ATP via ATP synthase.

The similarity in structure and function between cytochrome b6f (in chloroplasts) and cytochrome bc1 (Complex III in mitochondria) is striking. Both are transmembrane structures that remove electrons from a mobile, lipid-soluble electron carrier (plastoquinone in chloroplasts; ubiquinone in mitochondria) and transfer them to a mobile, water-soluble electron carrier (plastocyanin in chloroplasts; cytochrome c in mitochondria). Both are proton pumps that produce a transmembrane proton gradient.

Photosystem I

PS I accepts electrons from plastocyanin and transfers them either to NADPH (noncyclic electron transport) or back to cytochrome b6f (cyclic electron transport):

                        plastocyaninP700P700*ferredoxinNADPH 
                             ↑                            ↓
                            b6f plastoquinone 

PS I, like PS II, is a complex, highly organized transmembrane structure that contains antenna chlorophylls, a reaction center (P700), phylloquinine, and a number of iron-sulfur proteins that serve as intermediate redox carriers.

The light-harvesting system of PS I uses multiple copies of the same transmembrane proteins used by PS II. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700) to a higher energy level. The process occurs with astonishingly high efficiency.

Electrons are removed from excited chlorophyll molecules and transferred through a series of intermediate carriers to ferredoxin, a water-soluble electron carrier. As in PS II, this is a solid-state process that operates with essentially 100% efficiency.

There are two different pathways of electron transport in PS I. In noncyclic electron transport, ferredoxin carries the electron to an enzyme that reduces NADP+ to NADPH. Alternately, in cyclic electron transport, electrons from ferredoxin are transferred (via plastoquinone) to a proton pump, cytochrome b6f. They are then returned (via plastocyanin) to P700.

NADPH and ATP are used to synthesize organic molecules from CO2. The ratio of NADPH to ATP production can be adjusted by adjusting the balance between cyclic and noncyclic electron transport.

It is noteworthy that PS I closely resembles photosynthetic structures found in green sulfur bacteria, just as PS II resembles structures found in purple bacteria.


Photosynthetic electron transport chains in bacteria

PS II, PS I and cytochromeb6f are found in chloroplasts. All plants and all photosynthetic algae contain chloroplasts, which produce NADPH and ATP by the mechanisms described above. Essentially the same transmembrane structures are also found in cyanobacteria.

Unlike plants and algae, cyanobacteria are prokaryotes. They do not contain chloroplasts. Rather, they bear a striking resemblance to chloroplasts themselves. This suggests that organisms resembling cyanobacteria were the evolutionary precursors of chloroplasts. One imagines primitive eukaryotic cells taking up cyanobacteria as intracellular symbionts.

Cyanobacteria

Cyanobacteria contain structures similar to PS II and PS I in chloroplasts. Their light-harvesting system is different from that found in plants (they use phycobilins, rather than chlorophylls, as antenna pigments), but their electron transport chain

         H2OPS IIplastoquinone b6f cytochrome c6 PS IferredoxinNADPH 
                                                  ↑                     ↓
                                                 b6f plastoquinone                           

is essentially the same as the electron transport chain in chloroplasts. The mobile water-soluble electron carrier is cytochrome c6 in cyanobacteria, plastocyanin in plants.

Cyanobacteria can also synthesize ATP by oxidative phosphorylation, in the manner of other bacteria. The electron transport chain is

           NADH dehydrogenaseplastoquinone b6f cytochrome c6 cytochrome aa3 O2

where the mobile electron carriers are plastoquinone and cytochrome c6, while the proton pumps are NADH dehydrogenase, b6f and cytochrome aa3.

Cyanobacteria are the only bacteria that produce oxygen during photosynthesis. The Earth’s primordial atmosphere was anoxic. Organisms like cyanobacteria produced our present-day oxygen containing atmosphere.

The other two major groups of photosynthetic bacteria, purple bacteria and green sulfur bacteria, contain only a single photosystem and do not produce oxygen.

Purple bacteria

Purple bacteria contain a single photosystem that is structurally related to PS II in cyanobacteria and chloroplasts:

                     P870 → P870* → ubiquinone → bc1 → cytochrome c2 → P870

This is a cyclic process in which electrons are removed from an excited chlorophyll molecule (bacteriochlorophyll; P870), passed through an electron transport chain to a proton pump (cytochrome bc1 complex, similar but not identical to cytochrome bc1 in chloroplasts), and then returned to the cholorophyll molecule. The result is a proton gradient, which is used to make ATP via ATP synthase. As in cyanobacteria and chloroplasts, this is a solid-state process that depends on the precise orientation of various functional groups within a complex transmembrane macromolecular structure.

In order to make NADPH, purple bacteria use an external electron donor (hydrogen, hydrogen sulfide, sulfur, sulfite, or organic molecules such as succinate and lactate) to feed electrons into a reverse electron transport chain.

Green sulfur bacteria

Green sulfur bacteria contain a photosystem that is analogous to PS I in chloroplasts:

                             P840P840*ferredoxinNADH 
                               ↑                ↓
                            cyt c553  bc1  menaquinone 

There are two pathways of electron transfer. In cyclic electron transfer, electrons are removed from an excited chlorophyll molecule, passed through an electron transport chain to a proton pump, and then returned to the chlorophyll. The mobile electron carriers are, as usual, a lipid-soluble quinone and a water-soluble cytochrome. The resulting proton gradient is used to make ATP.

In noncyclic electron transfer, electrons are removed from an excited chlorophyll molecule and used to reduce NAD+ to NADH. The electrons removed from P840 must be replaced. This is accomplished by removing electrons from H2S, which is oxidized to sulfur (hence the name “green sulfur bacteria”).

Purple bacteria and green sulfur bacteria occupy relatively minor ecological niches in the present day biosphere. They are of interest because of their importance in precambrian ecologies, and because they were the evolutionary precursors of modern plants.


Summary

Electron transport chains are the source of energy for all known forms of life. They are redox reactions that transfer electrons from an electron donor to an electron acceptor. The transfer of electrons is coupled to the translocation of protons across a membrane, producing a proton gradient. The proton gradient is used to produce useful work.

The coupling of thermodynamically favorable to thermodynamically unfavorable biochemical reactions by biological macromolecules is an example of an emergent property – a property that could not have been predicted, even given full knowledge of the primitive geochemical systems from which these macromolecules evolved. It is an open question whether such emergent properties evolve only by chance, or whether they necessarily evolve in any large biogeochemical system, given the underlying laws of physics.


References

Fenchel T, King GM, Blackburn TH. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. 2nd ed. Elsevier; 1998.

Lengeler JW, Drews G, Schlegel HG, editors. Biology of the Prokaryotes. Blackwell Science; 1999.

Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 4th ed. Freeman; 2005.

Nicholls DG, Ferguson SJ. Bioenergetics 3. Academic Press; 2002.

Stumm W, Morgan JJ. Aquatic Chemistry. 3rd ed. Wiley; 1996.

Thauer RK, Jungermann K, Decker K. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev. 41:100-180; 1977.

White D. The Physiology and Biochemistry of Prokaryotes. 2nd ed. Oxford University Press; 2000.

Voet D, Voet JG. Biochemistry. 3rd ed. Wiley; 2004.

de:Atmungskette it:Catena di trasporto di elettroni lb:Oxydativ Phosphoryléierung ja:電子伝達系 pl:Łańcuch oddechowy fi:Elektroninsiirtoketju zh:電子傳遞鏈