Elementary matrix transformations

From Free net encyclopedia

(Redirected from Elementary matrix)

Elementary matrix transformations or elementary row and column transformations are linear transformations which are normally used in Gaussian elimination to solve a set of linear equations.

We distinguish three types of elementary transformations and their corresponding matrices:

  1. Row-switching transformations,
  2. Row-multiplying transformations,
  3. Linear combinator transformations.

Contents

1. Row-switching transformations

This transformation, Tij, switches all matrix elements on row i with their counterparts on row j. The matrix resulting in this transformation is:

<math>

T_{i,j} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & & \\ & & 1 & & 0 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

That is, Tij is the matrix produced by exchanging row i and row j of the identity matrix.

Properties

  • The matrix Tij is square.
  • The inverse of this matrix is itself: Tij−1=Tij.
  • Since the determinant of the identity matrix is unity, det[Tij] = −1. It follows that for any conformable square matrix A: det[TijA] = −det[A].

2. Row-multiplying transformations

This transformation, Ti(m), multiplies all elements on row i with m. The matrix resulting in this transformation is:

<math>

T_i(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & m & & & & \\ & & & & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

Properties

  • The inverse of this matrix is: Ti(m)−1 = Ti(1/m).
  • The matrix and its inverse are diagonal matrices.
  • det[Ti(m)] = m. Therefore for a conformable square matrix A: det[Ti(m)A] = m det[A].

3. Linear combinator transformations

This transformation, Tij(m), subtracts row i multiplied by m from row j. The matrix resulting in this transformation is:

<math>

T_{i,j}(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & \ddots & & & & \\ & & -m & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix} </math>

Properties

  • Tij(m)−1 = Tij(−m) (inverse matrix).
  • The matrix and its inverse are triangular matrices.
  • det[Tij(m)] = 1. Therefore, for a conformable square matrix A: det[Tij(m)A] = det[A].

See also

is:Frumfylki ja:行列の基本変形