Elementary matrix transformations

From Free net encyclopedia

Elementary matrix transformations or elementary row and column transformations are linear transformations which are normally used in Gaussian elimination to solve a set of linear equations.

We distinguish three types of elementary transformations and their corresponding matrices:

  1. Row-switching transformations,
  2. Row-multiplying transformations,
  3. Linear combinator transformations.

Contents

1. Row-switching transformations

This transformation, Tij, switches all matrix elements on row i with their counterparts on row j. The matrix resulting in this transformation is:

<math>

T_{i,j} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & & \\ & & 1 & & 0 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

That is, Tij is the matrix produced by exchanging row i and row j of the identity matrix.

Properties

  • The matrix Tij is square.
  • The inverse of this matrix is itself: Tij−1=Tij.
  • Since the determinant of the identity matrix is unity, det[Tij] = −1. It follows that for any conformable square matrix A: det[TijA] = −det[A].

2. Row-multiplying transformations

This transformation, Ti(m), multiplies all elements on row i with m. The matrix resulting in this transformation is:

<math>

T_i(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & m & & & & \\ & & & & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

Properties

  • The inverse of this matrix is: Ti(m)−1 = Ti(1/m).
  • The matrix and its inverse are diagonal matrices.
  • det[Ti(m)] = m. Therefore for a conformable square matrix A: det[Ti(m)A] = m det[A].

3. Linear combinator transformations

This transformation, Tij(m), subtracts row i multiplied by m from row j. The matrix resulting in this transformation is:

<math>

T_{i,j}(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & \ddots & & & & \\ & & -m & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix} </math>

Properties

  • Tij(m)−1 = Tij(−m) (inverse matrix).
  • The matrix and its inverse are triangular matrices.
  • det[Tij(m)] = 1. Therefore, for a conformable square matrix A: det[Tij(m)A] = det[A].

See also

is:Frumfylki ja:行列の基本変形