Epicycloid

From Free net encyclopedia

In geometry, an epicycloid is a plane curve produced by tracing the path of a chosen point of a circle — called epicycle — which rolls around without slipping around a fixed circle. It is a particular kind of roulette.

Image:Epicycloid.png

An epicycloid with n − 1 cusps is given by the parametric equations

<math> x(\theta) = \cos \theta + {1 \over n} \cos n \theta, </math>
<math> y(\theta) = \sin \theta + {1 \over n} \sin n \theta. </math>

The epicycloid is a special kind of epitrochoid.

An epicycle with one cusp is a cardioid.

An epicycloid and its evolute are similar.[1]

See also: cycloid, hypocycloid, deferent and epicycle.

af:Episikloïed de:Epizykloide fr:épicycloïde it:epicicloide nl:Cycloïdes#Epicycloïde pl:Epicykloida ru:Эпициклоида zh:外摆线