Euler-Mascheroni constant
From Free net encyclopedia
The Euler-Mascheroni constant is a mathematical constant, used mainly in number theory, and is defined as the limiting difference between the harmonic series and the natural logarithm:
- <math>\gamma = \lim_{n \rightarrow \infty } \left( \left(
\sum_{k=1}^n \frac{1}{k} \right) - \ln(n) \right)=\int_1^\infty\left({1\over\lfloor x\rfloor}-{1\over x}\right)\,dx</math>
Its approximate value is γ ≈ 0.57721 56649 01532 86060 65120 90082 40243 10421 59335
Contents |
History
The constant was first defined by Swiss mathematician Leonhard Euler in a paper De Progressionibus harmonicus observationes published in 1735. Euler used the notation C for the constant, and initially calculated its value to 6 decimal places. In 1761 he extended this calculation, publishing a value to 16 decimal places. In 1790 Italian mathematician Lorenzo Mascheroni introduced the notation γ for the constant, and attempted to extend Euler's calculation still further, to 32 decimal places, although subsequent calculations showed that he had made an error in the 20th decimal place.
It is not known whether γ is a rational number or not. However, continued fraction analysis shows that if γ is rational, its denominator has more than 10242080 digits (Havil, page 97).
Properties
The constant is given by several integrals:
- <math>\gamma = - \int_0^\infty { e^{-x} \ln(x) }\,dx </math>
- <math> = - \int_0^1 { \ln\ln\left (\frac{1}{x}\right ) }\,dx </math>
- <math> = \int_0^\infty {\left (\frac{1}{1-e^{-x}}-\frac{1}{x} \right )e^{-x} }\,dx </math>
- <math> = \int_0^\infty { \frac{1}{x} \left ( \frac{1}{1+x}-e^{-x} \right ) }\,dx. </math>
Other integrals that include <math> \gamma </math> are:
- <math> \int_0^\infty { e^{-x^2} \ln(x) }\,dx = -1/4(\gamma+2 \ln2) \sqrt{\pi} </math>
- <math> \int_0^\infty { e^{-x} (\ln(x))^2 }\,dx = \gamma^2 +1/6 \pi^2 .</math>
One can express <math> \gamma </math> as a double integral also:
- <math> \gamma = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1-x\,y)\ln(x\,y)} \, dx\,dy.
</math>
An interesting comparison by J. Sondow (2005) is the double integral
- <math> \ln \left ( \frac{4}{\pi} \right ) = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1+x\,y)\ln(x\,y)} \, dx\,dy. </math>
It shows that <math>\ln \left ( \frac{4}{\pi} \right )</math> may be thought of an "alternating Euler constant".
In 1910, Vacca gave the interesting sum
- <math> \gamma = \sum_{m=1}^\infty (-1)^m \frac{ \left \lfloor \log_2 m \right \rfloor}{m} </math>
where <math> \log_2 </math> is the logarithm of base 2 and <math> \left \lfloor \, \right \rfloor </math> is the floor function.
Vacca's series may be obtained by manipulation of Catalan's integral
- <math> \gamma = \int_0^1 \frac{1}{1+x} \sum_{n=1}^\infty x^{2^n-1} \, dx. </math>
Relations to special functions
<math> \gamma </math> can also be expressed as an infinite sum with terms involving the values of the Riemann zeta function at positive integers:
- <math>\gamma = \sum_{m=2}^{\infty} \frac{(-1)^m\zeta(m)}{m} </math>
- <math>= \ln \left ( \frac{4}{\pi} \right ) + \sum_{m=1}^{\infty} \frac{(-1)^{m-1} \zeta(m+1)}{2^m (m+1)}. </math>
Other Zeta-related series include
- <math> \gamma = \frac{3}{2}- \ln 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m} [\zeta(m)-1] </math>
- <math> = \lim_{n \to \infty} \left [ \frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{m \,n}}{(m+1)!} \sum_{t=0}^m \frac{1}{t+1} - n\, \ln2+ O \left ( \frac{1}{2^n\,e^{2^n}} \right ) \right ] </math>
- <math> = \lim_{n \to \infty} \left [ \frac{2\,n-1}{2\,n} - \ln\,n + \sum_{k=2}^n \left ( \frac{1}{k} - \frac{\zeta(1-k)}{n^k} \right ) \right ]. </math>
A limit related to the Beta function (in terms of Gamma functions) is
- <math> \gamma = \lim_{n \to \infty} \left [ \frac{ \Gamma(\frac{1}{n}) \Gamma(n+1)\, n^{1+1/n}}{\Gamma(2+n+\frac{1}{n})} - \frac{n^2}{n+1} \right ]. </math>
Two other interesting limits equaling the Euler-Mascheroni constant are the antisymmetric limit
- <math> \gamma = \lim_{s \to 1} \sum_{n=1}^\infty \left ( \frac{1}{n^s}-\frac{1}{s^n} \right ) </math>
and
- <math> \gamma = \lim_{x \to \infty} \left [ x - \Gamma \left ( \frac{1}{x} \right ) \right ] </math>
- <math> = \lim_{n \to \infty} \frac{1}{n}\, \sum_{k=1}^n \left ( \left \lceil \frac{n}{k} \right \rceil - \frac{n}{k} \right ).</math>
Closely related to this is the rational zeta series expression. By peeling off the first few terms of the series above, one obtains an estimate for the classical series limit:
- <math>\gamma = \sum_{k=1}^n \frac{1}{k} - \ln(n) -
\sum_{m=2}^\infty \frac{\zeta (m,n+1)}{m}</math> where <math>\zeta(s,k)</math> is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:
- <math>
H_n = \ln n + \gamma + \frac {1} {2n} - \frac {1} {12n^2} + \frac {1} {120n^4} - \varepsilon </math>, where <math>0 < \varepsilon < \frac {1} {252n^6}.</math>
There is also the related limit:
- <math>
\gamma = \lim_{n \to \infty} (H_{n-1} - \ln n). </math>
The constant can also be calculated as a derivative of Euler's Gamma function:
- <math>\gamma = -\Gamma'(1).</math>
e to the power of γ
The constant eγ is also important in number theory. Occasionally, eγ is denoted <math> y' </math> It is expressed with the following limit, where pn is the n-th prime number:
- <math>
e^\gamma = \lim_{n \to \infty} \frac {1} {\ln p_n} \prod_{i=1}^n \frac {p_i} {p_i - 1} </math> which is a restatement of the third of Mertens' theorems. The numerical value of eγ is:
- <math>e^\gamma =1.78107241799019798523650410310717954916964521430343\dots</math>
Other infinite products relating to <math> e^{\gamma} </math> include
- <math> \frac{e^{1+\gamma /2}}{\sqrt{2\,\pi}} = \prod_{n=1}^\infty e^{-1+1/(2\,n)}\,\left (1+\frac{1}{n} \right )^n </math>
- <math> \frac{e^{3+2\gamma}}{2\, \pi} = \prod_{n=1}^\infty e^{-2+2/n}\,\left (1+\frac{2}{n} \right )^n. </math>
Both of these products result from the Barnes G-function
- <math> e^{\gamma} = \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4} \cdots </math>
It is due to J. Sondow using hypergeometric functions.
Appearances
The Euler-Mascheroni constant appears, among other places, in:
- an inequality for Euler's totient function
- the growth rate of the divisor function
- a product formula for the gamma function
- calculations of the digamma function
- calculation of the Meissel-Mertens constant
- expressions involving the exponential integral
- the first term of the Taylor series expansion for the Riemann zeta function, where it is the first of the Stieltjes constants
- the third of Mertens' theorems.
References
- Template:Cite journal (Provides a derivation of the sums over Riemann zeta)
- Knuth, Donald E., The Art of Computer Programming, volume 1, Addison-Wesley. 1997 (third edition). ISBN 0-20189-683-4
- {{cite book
| first = Julian | last = Havil | year = 2003 | title = Gamma: Exploring Euler's Constant | publisher = Princeton University Press | id = ISBN 0-691-09983-9
}}
External links
- Euler-Mascheroni constant at MathWorld
- Euler-Mascheroni Constant from the Mathcad Library
- Value of γ to 10 million decimal places (Simon Plouffe)ca:Constant d'Euler-Mascheroni
de:Euler-Mascheroni-Konstante es:Constante de Euler-Mascheroni fr:Constante d'Euler-Mascheroni he:קבוע אוילר it:Costante di Eulero-Mascheroni ja:オイラーの定数 ko:오일러-마스케로니 상수 nl:Constante van Euler-Mascheroni pl:Stała Eulera ru:Постоянная Эйлера — Маскерони sl:Euler-Mascheronijeva konstanta