Prime number

From Free net encyclopedia

In mathematics, a prime number (or a prime) is a natural number that has exactly two (distinct) natural number divisors, which are 1 and the prime number itself. There exists an infinity of prime numbers, as demonstrated by Euclid in about 300 B.C.. The first 30 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113; see the list of prime numbers for a longer list.

The property of being a prime is called primality. Since 2 is the only even prime number, the term odd prime refers to all prime numbers greater than 2.

The study of prime numbers is part of number theory, the branch of mathematics which encompasses the study of natural numbers. Prime numbers have been the subject of intense research, yet some fundamental questions remain such as the Riemann hypothesis or the Goldbach conjecture, which have been open for more than a century. The problem of modeling the distribution of prime numbers is a popular subject of investigation for number theorists: When looking at individual numbers, the primes seem to be randomly distributed, but the "global" distribution of primes follows well-defined laws.

For a long time, prime numbers were thought as having no possible application outside of number theory; this changed in the 1970s when the concepts of public-key cryptography were invented, in which prime numbers formed the basis of the first algorithms such as the RSA cryptosystem or the Diffie-Hellman key-exchange algorithm.

The notion of prime number has been generalized in many different branches of mathematics. In the context of ring theory, a branch of abstract algebra, the term "prime element" has a specific meaning. Here, a ring element a is defined to be prime if whenever a divides b c for ring elements b and c, then a divides at least one of b or c. With this meaning, the additive inverse of any prime number is also prime. In other words, when considering the set of integers <math>\mathbb{Z}</math> as a ring, <math>-7</math> is a prime element. Without further specification, however, "prime number" always means a positive integer prime.

Contents

Prime divisors

The fundamental theorem of arithmetic states that every positive integer larger than 1 can be written as a product of primes in a unique way, i.e. unique except for the order. Primes are thus the "basic building blocks" of the natural numbers. For example, we can write

<math>23244 = 2^2 \times 3 \times 13 \times 149 \,</math>

and any other such factorization of 23244 will be identical except for the order of the factors. See prime factorization algorithm for details for how to do this in practice for larger numbers.

The importance of this theorem is one of the reasons for the exclusion of 1 from the set of prime numbers. If 1 were admitted as a prime, the precise statement of the theorem would require additional qualifications.

Properties of primes

  • If p is a prime number and p divides a product ab of integers, then p divides a or p divides b. This proposition was proved by Euclid and is known as Euclid's lemma. It is used in some proofs of the uniqueness of prime factorizations.
  • If p is a prime number other than 2 and 5, 1/p is always a recurring decimal, with a period of p-1 or a divisor of p-1. This can be deduced directly from Fermat's little theorem. 1/p expressed likewise in base q (i.e. other than base 10) has similar effect, provided that p is not a prime factor of q. The article on recurring decimals shows some of the interesting properties.
  • An integer p > 1 is prime if and only if the factorial (p − 1)! + 1 is divisible by p (Wilson's theorem). Conversely, an integer n > 4 is composite if and only if (n − 1)! is divisible by n.
  • If n is a positive integer greater than 1, then there is always a prime number p with n < p < 2n (Bertrand's postulate).
  • Adding the reciprocals of all primes together results in a divergent infinite series (proof). More precisely, if S(x) denotes the sum of the reciprocals of all prime numbers p with p ≤ x, then S(x) = ln ln x + O(1) for x → ∞ (see Big O notation).
  • In every arithmetic progression a, a + q, a + 2q, a + 3q,... where the positive integers a and q ≥ 1 are coprime, there are infinitely many primes (Dirichlet's theorem).
  • If G is a finite group and pn is the highest power of the prime p which divides the order of G, then G has a subgroup of order pn. (Sylow theorems)
  • If p is prime and G is a group with pn elements, then G contains an element of order p.
  • The prime number theorem says that the proportion of primes less than x is asymptotic to 1/ln x (in other words, as x gets very large, the likelihood that a number less than x is prime is inversely proportional to the number of digits in x).
  • The constant 0.235711131719232931374143..., obtained by concatenating the prime numbers, is known to be an irrational number.
  • The value of the Riemann zeta function at each point in the complex plane is given by a product over the set of all primes.
<math>\zeta(s)=

\sum_{n=1}^\infin \frac{1}{n^s} = \prod_{p} \frac{1}{1-p^{-s}}</math>

Evaluating this identity at different integers provides an infinite number of products over the primes whose values can be calculated, the first two being
<math>\prod_{p} \frac{1}{1-p^{-1}} = \infty</math>
<math>\prod_{p} \frac{1}{1-p^{-2}}= \frac{\pi^2}{6}</math>
  • If <math>p>1\;</math>, the polynomial <math> x^{p-1}+x^{p-2}+ \cdots + 1 </math> is irreducible if and only if <math>p\;</math> is prime.

The number of prime numbers

There is an infinite number of prime numbers

The oldest known proof for the statement that there are infinitely many prime numbers is given by the Greek mathematician Euclid in his Elements (Book IX, Proposition 20). Euclid states the result as "there are more than any given [finite] number of primes", and his proof is essentially the following:

Suppose you have a finite number of primes. Call this number m. Multiply all m primes together and add one (see Euclid number). The resulting number is not divisible by any of the finite set of primes, because dividing by any of these would give a remainder of one. And one is not divisible by any primes. Therefore it must either be prime itself, or be divisible by some other prime that was not included in the finite set. Either way, there must be at least m + 1 primes. But this argument applies no matter what m is; it applies to m + 1, too. So there are more primes than any given finite number.

This previous argument explains why the product of m primes + 1 must be divisible by some prime not in the finite set of primes.

Other mathematicians have given their own proofs. One of those (due to Euler) shows that the sum of the reciprocals of all prime numbers diverges to infinity. Kummer's is particularly elegant and Furstenberg provides one using general topology.

Counting the number of prime numbers under X magnitude

Even though the total number of primes is infinite, one could still ask "approximately how many primes are there below 100,000" or "How likely is a random 100-digit number to be prime?" Questions like these are answered by the prime number theorem. (Incidentally, modern computers permit a fairly quick exact analysis of the first question; the answer is 9592, the largest being 99991.)

Location of prime numbers

Finding prime numbers

The Sieve of Eratosthenes is a simple way, and the Sieve of Atkin a fast way, to compute the list of all prime numbers up to a given limit.

In practice, though, one usually wants to check whether a given number is prime, rather than generate a list of primes. Further, it is often satisfactory to know the answer with a high probability. It is possible to quickly check whether a given large number (say, up to a few thousand digits) is prime using probabilistic primality tests. These typically pick a random number called a "witness" and check some formula involving the witness and the potential prime N. After several iterations, they declare N to be "definitely composite" or "probably prime". Some of these tests are not perfect: there may be some composite numbers, called pseudoprimes for the respective test, that will be declared "probably prime" no matter what witness is chosen. However, the most popular probabilistic tests do not suffer from this drawback.

One method for determining whether a number is prime is to divide by all primes less than or equal to the square root of that number. If any of the divisions come out as an integer, then the original number is not a prime. Otherwise, it is a prime. One need not actually calculate the square root; once one sees that the quotients exceed the divisors, one can stop. This is known as trial division; it is the simplest primality test and it quickly becomes impractical for testing large integers because the number of possible factors grows exponentially as the number of digits in the number-to-be-tested increases.


Primality tests

Main article: primality test

A primality test algorithm is an algorithm which tests a number for primality, i.e. whether the number is a prime number.

A probable prime is an integer which, by virtue of having passed a certain test, is considered to be probably prime. Probable primes which are in fact composite (such as Carmichael numbers) are called pseudoprimes.


In 2002, Indian scientists at IIT Kanpur discovered a new deterministic algorithm known as the AKS algorithm. The amount of time that this algorithm takes to check whether a number N is prime depends on a polynomial function of the number of digits of N (i.e. of the logarithm of N).

Formulas yielding prime numbers

Main article formula for primes

There is no known formula for primes which is more efficient at finding primes than the methods mentioned above under "Finding prime numbers".

There is a set of Diophantine equations in 9 variables and one parameter with the following property: the parameter is prime if and only if the resulting system of equations has a solution over the natural numbers. This can be used to obtain a single formula with the property that all its positive values are prime.

There is no polynomial, even in several variables, that takes only prime values. For example, the curious polynomial in one variable f(n) = n2 − n + 41 yields primes for n = 0,..., 40, but f(41) is composite. However, there are polynomials in several variables, whose positive values as the variables take all positive integer values are exactly the primes.

Another formula is based on Wilson's theorem mentioned above, and generates the number two many times and all other primes exactly once. There are other similar formulae which also produce primes.

Special types of primes from formulas for primes

A prime p is called primorial or prime-factorial if it has the form p = Π(n) ± 1 for some number n, where Π(n) stands for the product 2 · 3 · 5 · 7 · 11 · ... of all the primes ≤ n. A prime is called factorial if it is of the form n! ± 1. The first factorial primes are:

n! − 1 is prime for n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166,... Template:OEIS
n! + 1 is prime for n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154... Template:OEIS

The largest known primorial prime is Π(392113) + 1, found by Heuer in 2001.[1] The largest known factorial prime is 34790! − 1, found by Marchal, Carmody and Kuosa in 2002.[2] It is not known whether there are infinitely many primorial or factorial primes.

Primes of the form 2n − 1 are known as Mersenne primes, while primes of the form <math>2^{2^n} + 1</math> are known as Fermat primes. Prime numbers p where 2p + 1 is also prime are known as Sophie Germain primes. The following list is of other special types of prime numbers that come from formulas:

The base-ten digit sequence of a prime can be a palindrome, as in the prime 1031512 + 9700079 · 1015753 + 1.

The distribution of the prime numbers

The prime numbers are distributed among the natural numbers in an unpredictable way, but there do appear to be laws governing their behavior. Leonhard Euler commented

"Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the mind will never penetrate."

Paul Erdős said

"God may not play dice with the universe, but something strange is going on with the prime numbers", and that seems to be connected with Einstein's quote, "God does not play dice with the universe."

In a 1975 lecture, Don Zagier commented

"There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. The first is that, despite their simple definition and role as the building blocks of the natural numbers, the prime numbers grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behavior, and that they obey these laws with almost military precision."

Gaps between primes

Let pn denote the n-th prime number (i.e. p1 = 2, p2 = 3, etc.). The gap gn between the consecutive primes pn and pn + 1 is the number of (composite) numbers between them, i.e.

gn = pn + 1pn − 1.

(Slightly different definitions are sometimes used.) We have g1 = 0, g2 = g3 = 1, and g4 = 3. The sequence {gn} of prime gaps has been extensively studied.

For any N, the sequence

(N + 1)! + 2, (N + 1)! + 3, ..., (N + 1)! + N + 1

is a sequence of N consecutive composite integers. Therefore, there exist gaps between primes which are arbitrarily large, i.e. for any natural number N, there is an integer n with gn > N. (Choose n so that pn is the greatest prime number less than (N + 1)! + 2.) On the other hand, the gaps get arbitrarily small in proportion to the primes: the quotient (gn/pn) approaches zero as n approaches infinity.

We say that gn is a maximal gap if gm < gn for all m < n. The largest known maximal gap is 1247, found by T. O. e Silva in 2005. It is the 69th maximal gap, and it occurs after the prime 218034721194214273.[3]

The largest prime gap with identified gap ends known as of January 1 2006 has a length of 2254929 [4].

Note that the twin prime conjecture simply asserts that gn = 1 for infinitely many integers n.

Location of the largest known prime

Template:Wikinews

The largest known prime, as of December 2005, is 230402457 − 1 (this number is 9,152,052 digits long); it is the 43rd known Mersenne prime. M30402457 was found on December 15, 2005 by Curtis Cooper and Steven Boone, professors at Central Missouri State University and members of a collaborative effort known as GIMPS. Before finding the prime, Cooper and Boone ran the GIMPS program on a peak of 700 CMSU computers for 9 years.

The next two largest known primes are also Mersenne Primes: M25964951=225964951 − 1 (42nd known Mersenne prime, 7,816,230 digits long) and M24036583=224036583 − 1 (41st known Mersenne prime, 7,235,733 digits long). Historically, the largest known prime has almost always been a Mersenne prime since the dawn of electronic computers, because there exists a particularly fast primality test for numbers of this form, the Lucas-Lehmer test for Mersenne numbers.

The largest known prime that is not a Mersenne prime is 27653 × 29167433 + 1 (2,759,677 digits). This is also the sixth largest known prime of any form. It was found by the Seventeen or Bust project and it brings them one step closer to solving the Sierpinski problem.

Some of the largest primes not known to have any particular form (that is, no simple formula such as that of Mersenne primes) have been found by taking a piece of semi-random binary data, converting it to a number n, multiplying it by 256k for some positive integer k, and searching for possible primes within the interval [256kn + 1, 256k(n + 1) − 1].

Generalizations of the prime concept

The concept of prime number is so important that it has been generalized in different ways in various branches of mathematics.

Prime elements in rings

One can define prime elements and irreducible elements in any integral domain. For the ring Z of integers, the set of prime elements equals the set of irreducible elements; it's {...−11, −7, −5, −3, −2, 2, 3, 5, 7, 11, ...}.

As an example, we consider the Gaussian integers Z[i], that is, complex numbers of the form a + bi with a and b in Z. This is an integral domain, and its prime elements are the Gaussian primes. Note that 2 is not a Gaussian prime, because it factors into the product of the two Gaussian primes (1 + i) and (1 − i). The element 3, however, remains prime in the Gaussian integers. In general, rational primes (i.e. prime elements in the ring Z of integers) of the form 4k + 3 are Gaussian primes, whereas rational primes of the form 4k + 1 are not.

Prime ideals

In ring theory, one generally replaces the notion of number with that of ideal. Prime ideals are an important tool and object of study in commutative algebra, algebraic number theory and algebraic geometry. The prime ideals of the ring of integers are the ideals (0), (2), (3), (5), (7), (11), ...

A central problem in algebraic number theory is how a prime ideal factors when it is lifted to an extension field. For example, in the Gaussian integer example above, (2) ramifies into a prime power (1 + i and 1 − i generate the same prime ideal), prime ideals of the form (4k + 3) are inert (remain prime), and prime ideals of the form (4k + 1) split (are the product of 2 distinct prime ideals).

Primes in valuation theory

In class field theory yet another generalization is used. Given an arbitrary field K, one considers valuations on K, certain functions from K to the real numbers R. Every such valuation yields a topology on K, and two valuations are called equivalent if they yield the same topology. A prime of K (sometimes called a place of K) is an equivalence class of valuations. With this definition, the primes of the field Q of rational numbers are represented by the standard absolute value function (known as the "infinite prime") as well as by the p-adic valuations on Q, for every prime number p.

Open questions

There are many open questions about prime numbers. The most significant of these is the Riemann hypothesis, which essentially says that the primes are as regularly distributed as possible. From a physical viewpoint, it roughly states that the irregularity in the distribution of primes only comes from random noise. From a mathematical viewpoint, it roughly states that the asymptotic distribution of primes (about 1/ log x of number less than x are primes, the prime number theorem) also holds for much shorter intervals of length about the square root of x (for intervals near x). This hypothesis is generally believed to be correct, in particular, the simplest assumption is that primes should have no significant irregularities without good reason.

Other famous conjectures have a much greater chance of being true (in a formal sense, they follow from simple heuristic probabilistic arguments) with the lack of a solution more likely a reflection of the lack of suitable proof tools:

  • Every odd integer greater than 5 can be written as a sum of three primes.
  • There are infinitely many primes of the form n2 + 1.
  • Cramer's conjecture: <math> d(x)</math>, the largest gap between consecutive primes, among all primes less than x, is asymptotic to <math> \log^2 x</math>. This conjecture clearly implies the previous one, but its status is a little more unsure.
  • Brocard's conjecture: There are always at least four primes between the squares of successive primes > 2.

Applications

For a long time, number theory in general, and the study of prime numbers in particular, was seen as the canonical example of pure mathematics, with no applications outside of the self-interest of studying the topic. In particular, number theorists such as British mathematician G. H. Hardy prided themselves on doing work that had absolutely no military significance.<ref>No one has yet discovered any warlike purpose to be served by the theory of numbers or relativity, and it seems unlikely that anyone will do so for many years. G. H. Hardy, A Mathematician's Apology</ref> However, this vision was shattered in the 1970s, when it was publicly announced that prime numbers could be used as the basis for the creation of public key cryptography algorithms. Prime numbers are also used for hash tables and pseudorandom number generators.

Public-key cryptography

Template:Main

Several public-key cryptography algorithms, such as RSA, are based on extremely large prime numbers (that is, greater than 10100).

Prime numbers in nature

Many numbers occur in nature, and inevitably some of these are prime. There are, however, relatively few examples of numbers that appear in nature because they are prime. For example, starfish have 5 'legs', which is a prime number. However there is no evidence to suggest that starfish have 5 'legs' because 5 is a prime number; insects seem to manage just fine with 6 legs.

One example of the use of prime numbers in nature is as an evolutionary strategy used by different species of insects called cicadas (both from the subspecies magicicada) which emerge in Eastern North America every 13 or 17 years to breed. The logic for this in nature appears to be that a predator specializing in magicicadas would have to emerge at the exact same frequency to find its prey.<ref>Paulo R. A. Campos, Viviane M. de Oliveira, Ronaldo Giro, and Douglas S. Galvão. Emergence of Prime Numbers as the Result of Evolutionary Strategy. Phys. Rev. Lett. 93, 098107 (2004)</ref> If magicicadas had appeared say every 12 years, then predators appearing every 2, 3, 4, 6, or 12 years would be sure to meet them. Over a 200-year period, average predator populations during hypothetical outbreaks of 14- and 15-year cicadas would be up to 2% higher than during outbreaks of 13- and 17-year cicadas.<ref>The Economist. Invasion of the Blood. 6 May 2004.</ref> Though small, this appears enough to drive natural selection towards a prime-numbered life-cycle in this insect.

Primes in pop culture

In an episode of Star Trek: The Next Generation, two mutually unintelligible sentient life forms use the beginning sequence of prime numbers to communicate the fact that they are intelligent, thinking beings. Similarly, in the movie Contact, an extraterrestrial intelligence transmits primes. In Stephen King's novels The Waste Lands and Wizard and Glass, the protagonists solve a puzzle using primes in order to ride on the sentient and deranged train, Blaine the Mono. Also, in Cube, prime numbers are used by the characters to escape from a mysterious facility. In Mark Haddon's novel The Curious Incident of the Dog in the Night-time, the main character is fascinated by prime numbers, and in the book the chapters are numbered with primes. In the Stargate Atlantis episode "Hot Zone", physicists Rodney McKay and Radek Zelenka play the game "Prime or Not Prime" in which players randomly name numbers and expect the other player or players to determine whether the number is prime.

Trivia

357686312646216567629137 is the largest prime number that is "left-truncatable" in decimal, meaning that the number, as well as all the numbers obtained by successively removing the first digit at the left of the number are prime: 357686312646216567629137, 57686312646216567629137, 7686312646216567629137, ..., 9137, 137, 37 and 7 are all prime. Similarily, 73939133 is the largest prime number that is "right-truncatable" in decimal, so that 73939133, 7393913, 739391, ..., 739, 73 and 7 are all prime. While the primality of a number does not depend on the numeral system used, truncatable primes are defined only in relation with a given base. In decimal, there exists exactly 4260 left-truncatable and 83 right-truncatable primes.<ref>Eric W. Weisstein. "Truncatable Prime" at MathWorld.</ref>

As a publicity stunt against the Digital Millennium Copyright Act and other WIPO Copyright Treaty implementations, some people have tried to encode various forms of DeCSS code with prime numbers, creating the set of illegal prime numbers. Such numbers, when converted to binary and executed as a computer program, perform acts encumbered by applicable law in one or more jurisdictions.

See also

Template:Col-begin Template:Col-break

Template:Col-break

Template:Col-end

Notes

<references/>

References

  • Karl Sabbagh, The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics. Farrar, Straus and Giroux; 340 pages
  • John Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Joseph Henry Press; 448 pages
  • Marcus du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. HarperCollins; 352 pages. ISBN 0066210704. The Music of Primes website.
  • H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed., Birkhäuser 1994.

External links

Template:Link FAaf:Priemgetal ang:Frumtæl ar:عدد أولي be:Просты лік bg:Просто число ca:Nombre primer cs:Prvočíslo da:Primtal de:Primzahl el:Πρώτος αριθμός eo:Primo es:Número primo et:Algarv eu:Zenbaki lehen fa:اعداد اول fi:Alkuluku fr:Nombre premier gl:Número primo he:מספר ראשוני hr:Prosti broj hu:Prímszámok id:Bilangan prima is:Frumtala it:Numero primo ja:素数 ko:소수 (수론) la:Numerus primus lb:Primzuel lt:Pirminis skaičius nds:Primtall nl:Priemgetal nn:Primtal no:Primtall pl:Liczby pierwsze pt:Número primo ru:Простое число scn:Nùmmuru primu simple:Prime number sk:Prvočíslo sl:Praštevilo sr:Прост број sv:Primtal th:จำนวนเฉพาะ tr:Asal sayılar uk:Просте число zh:素数 zh-min-nan:Sò͘-sò͘