Unique prime

From Free net encyclopedia

In mathematics, a unique prime is a certain kind of prime number. A prime p ≠ 2, 5 is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1 / p, is equivalent to the period length of the reciprocal of q, 1 / q. Unique primes were first described by Samuel Yates in 1980.

It can be shown that a prime p is of unique period n iff there exists a natural number c such that

<math>\frac{\Phi_n(10)}{\gcd(\Phi_n(10),n)} = p^c</math>

where Φn(x) is the n-th cyclotomic polynomial. At present, more than fifty unique primes or probable primes are known. However, there are only twenty-three unique primes below 10100. The following table gives an overview of all 23 unique primes below 10100 Template:OEIS and their periods Template:OEIS:

Period lengthPrime
13
211
337
4101
109,091
129,901
9333,667
14909,091
2499,990,001
36999,999,000,001
489,999,999,900,000,001
38909,090,909,090,909,091
191,111,111,111,111,111,111
2311,111,111,111,111,111,111,111
39900,900,900,900,990,990,990,991
62909,090,909,090,909,090,909,090,909,091
120100,009,999,999,899,989,999,000,000,010,001
15010,000,099,999,999,989,999,899,999,000,000,000,100,001
1069,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091
93900,900,900,900,900,900,900,900,900,900,990,990,990,990,990,990,990,990,990,991
134909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091
294142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143
196999,999,999,999,990,000,000,000,000,099,999,999,999,999,000,000,000,000,009,999,999,999,999,900,000,000,000,001

The twenty-fourth unique prime has period 320 and 128 digits. It can be written as (932032)2 + 1, where the subscript number indicates n consecutive copies of the digit or group of digits before the subscript. Though they are rare, based on the occurrence of repunit primes and probable primes, it is conjectured strongly that there are infinitely many unique primes.

The repunit R86453 is the largest known probable unique prime, whilst the largest proven unique prime can be written as (101132 + 1)/10001 or, using the method above, as (99990000)141+ 1. Its period of reciprocal is 2264.

External links