F-distribution
From Free net encyclopedia
Template:Probability distribution {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!</math>|
cdf =<math>I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!</math>| mean =<math>\frac{d_2}{d_2-2}\!</math> for <math>d_2 > 2</math>| median =| mode =<math>\frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\!</math> for <math>d_1 > 2</math>| variance =<math>\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!</math> for <math>d_2 > 4</math>| skewness =<math>\frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!</math>
for <math>d_2 > 6</math>| kurtosis =see text| entropy =| mgf =see text for raw moments| char =|
}} In probability theory and statistics, the F-distribution is a continuous probability distribution. It is also known as Snedecor's F distribution or the Fisher-Snedecor distribution (after Ronald Fisher and George W. Snedecor).
A random variate of the F-distribution arises as the ratio of two chi-squared variates:
- <math>\frac{U_1/d_1}{U_2/d_2}</math>
where
- U1 and U2 have chi-square distributions with d1 and d2 degrees of freedom respectively, and
- U1 and U2 are independent (see Cochran's theorem for an application).
The F-distribution arises frequently as the null distribution of a test statistic, especially in likelihood-ratio tests, perhaps most notably in the analysis of variance; see F-test.
The expectation, variance, and skewness are given in the sidebox; for <math>d_2>8</math>, the kurtosis is
- <math>\frac{12(20d_2-8d_2^2+d_2^3+44d_1-32d_1d_2+5d_2^2d_1-22d_1^2+5d_2d_1^2-16)}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}</math>
The probability density function of an F(d1, d2) distributed random variable is given by
- <math> g(x) = \frac{1}{\mathrm{B}(d_1/2, d_2/2)} \; \left(\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_1/2} \; \left(1-\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_2/2} \; x^{-1} </math>
for real x ≥ 0, where d1 and d2 are positive integers, and B is the beta function.
The cumulative distribution function is
- <math> G(x) = I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2) </math>
where I is the regularized incomplete beta function.
Generalization
A generalization of the (central) F-distribution is the noncentral F-distribution.
Related distributions
- <math>Y \sim \chi^2</math> is a chi-square distribution as <math>Y = \lim_{\nu_2 \to \infty} \nu_1 X</math> for <math>X \sim \mathrm{F}(\nu_1, \nu_2)</math>.
External links
- Table of critical values of the F-distribution
- Online significance testing with the F-distribution
- Distribution Calculator Calculates probabilities and critical values for normal, t-, chi2- and F-distributionde:F-Verteilung
es:Distribución F it:Variabile casuale F di Snedecor nl:F-verdeling