F-distribution

From Free net encyclopedia

Template:Probability distribution {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!</math>|

 cdf        =<math>I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!</math>|
 mean       =<math>\frac{d_2}{d_2-2}\!</math> for <math>d_2 > 2</math>|
 median     =|
 mode       =<math>\frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\!</math> for <math>d_1 > 2</math>|
 variance   =<math>\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!</math> for <math>d_2 > 4</math>|
 skewness   =<math>\frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!</math>
for <math>d_2 > 6</math>| kurtosis =see text| entropy =| mgf =see text for raw moments| char =|

}} In probability theory and statistics, the F-distribution is a continuous probability distribution. It is also known as Snedecor's F distribution or the Fisher-Snedecor distribution (after Ronald Fisher and George W. Snedecor).

A random variate of the F-distribution arises as the ratio of two chi-squared variates:

<math>\frac{U_1/d_1}{U_2/d_2}</math>

where

The F-distribution arises frequently as the null distribution of a test statistic, especially in likelihood-ratio tests, perhaps most notably in the analysis of variance; see F-test.

The expectation, variance, and skewness are given in the sidebox; for <math>d_2>8</math>, the kurtosis is

<math>\frac{12(20d_2-8d_2^2+d_2^3+44d_1-32d_1d_2+5d_2^2d_1-22d_1^2+5d_2d_1^2-16)}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}</math>

The probability density function of an F(d1, d2) distributed random variable is given by

<math> g(x) = \frac{1}{\mathrm{B}(d_1/2, d_2/2)} \; \left(\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_1/2} \; \left(1-\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_2/2} \; x^{-1} </math>

for real x ≥ 0, where d1 and d2 are positive integers, and B is the beta function.

The cumulative distribution function is

<math> G(x) = I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2) </math>

where I is the regularized incomplete beta function.

Generalization

A generalization of the (central) F-distribution is the noncentral F-distribution.

Related distributions

  • <math>Y \sim \chi^2</math> is a chi-square distribution as <math>Y = \lim_{\nu_2 \to \infty} \nu_1 X</math> for <math>X \sim \mathrm{F}(\nu_1, \nu_2)</math>.

External links

es:Distribución F it:Variabile casuale F di Snedecor nl:F-verdeling