Gadolinium
From Free net encyclopedia
Template:Elementbox header Template:Elementbox series Template:Elementbox periodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox densityliq gpcm3mp Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmm Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmk Template:Elementbox speedofsound rodmpsat20 Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox vickershardness mpa Template:Elementbox cas number Template:Elementbox isotopes begin Template:Elementbox isotopes decay Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes stable Template:Elementbox isotopes decay Template:Elementbox isotopes end Template:Elementbox footer
Gadolinium is a chemical element in the periodic table that has the symbol Gd and atomic number 64.
Contents |
Notable characteristics
Gadolinium is a silvery white, malleable and ductile rare earth metal with a metallic luster. It crystallizes in hexagonal, close-packed alpha form at room temperature; when heated to 1508 K, it transforms into its beta form, which has a body-centered cubic structure.
Unlike other rare earth elements, gadolinium is relatively stable in dry air; however, it tarnishes quickly in moist air and forms a loosely adhering oxide that spalls off and exposes more surface to oxidation. Gadolinium reacts slowly with water and is soluble in dilute acid.
Gadolinium has the highest thermal neutron capture cross-section of any (known) element, 49,000 barns, but it also has a fast burn-out rate, limiting its usefulness as a nuclear control rod material.
Gadolinium becomes superconductive below a critical temperature of 1.083 K. It is strongly magnetic at room temperature, and exhibits ferromagnetic properties below room temperature.
Applications
Gadolinium is used for making gadolinium yttrium garnets, which have microwave applications, and gadolinium compounds are used for making phosphors for colour TV tubes. Gadolinium is also used for manufacturing compact discs and computer memory.
Gadolinium is used in nuclear marine propulsion systems as a burnable poison. The gadolinium slows the initial reaction rate, but as it decays other neutron poisons accumulate, allowing for long-running cores. Gadolinium is also used as a secondary, emergency shut-down measure in some nuclear reactors, particularly of the CANDU type.
Gadolinium also possesses unusual metallurgic properties, with as little as 1% of gadolinium improving the workability and resistance of iron, chromium and related alloys to high temperatures and oxidation.
Solutions of organic gadolinium complexes are used as intravenous radiocontrast agents to enhance images in medical magnetic resonance imaging.
Because of their paramagnetic properties, gadolinium compounds are used in magnetic resonance imaging.
Gallium Gadolinium Garnet (Gd3Ga5O12) is a material with good optical properties, and is used in fabrication of various optical components and as substrate material for magneto–optical films.
In the future, gadolinium ethyl sulfate, which has extremely low noise characteristics, may be used in masers. Furthermore, gadolinium's high magnetic movement and low Curie temperature (which lies just at room temperature) suggest applications as a magnetic component for sensing hot and cold.
Due the extremely high neutron cross-section of Gadolinium, this element is very effective for use with neutron radiography.
History
In 1880, Swiss chemist Jean Charles Galissard de Marignac observed spectroscopic lines due to gadolinium in samples of didymium and gadolinite; French chemist Paul Émile Lecoq de Boisbaudran separated gadolinia, the oxide of Gadolinium, from Mosander's yttria in 1886. The element itself was isolated only recently.
Gadolinium, like the mineral gadolinite, is named after Finnish chemist and geologist Johan Gadolin.
Biological role
Gadolinium has no known biological role.
Occurrence
Gadolinium is never found in nature as the free element, but is contained in many rare minerals such as monazite and bastnasite. It occurs only in trace amounts in the mineral gadolinite which was also named for Johan Gadolin. Today, it is prepared by ion exchange and solvent extraction technique, or by the reduction of its anhydrous fluoride with metallic calcium.
Compounds
Compounds of gadolinium include:
See also gadolinium compounds.
Isotopes
Naturally occurring gadolinium is composed of 5 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd and 158Gd, and 2 radioisotopes, 152Gd and 160Gd, with 158Gd being the most abundant (24.84% natural abundance). 30 radioisotopes have been characterized with the most stable being 160Gd with a half-life of more than 1.3×1021 years (the decay is not observed, only the lower limit on the half-life is known), alpha-decaying 152Gd with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lifes that are less than 74.7 years, and the majority of these have half lifes that are less than 24.6 seconds. This element also has 4 meta states with the most stable being 143mGd (t½ 110 seconds), 145mGd (t½ 85 seconds) and 141mGd (t½ 24.5 seconds).
The primary decay mode before the most abundant stable isotope, 158Gd, is electron capture and the primary mode after is beta minus decay. The primary decay products before 158Gd are element Eu (Europium) isotopes and the primary products after are element Tb (Terbium) isotopes.
Precautions
As with the other lanthanides, gadolinium compounds are of low to moderate toxicity, although their toxicity has not been investigated in detail.
References
External links
Template:Commons Template:Wiktionary
cs:Gadolinium de:Gadolinium et:Gadoliinium es:Gadolinio eo:Gadolinio fr:Gadolinium ko:가돌리늄 io:Gadolino it:Gadolinio he:גדוליניום lt:Gadolinis hu:Gadolínium nl:Gadolinium ja:ガドリニウム no:Gadolinium nn:Gadolinium pl:Gadolin pt:Gadolínio ru:Гадолиний sl:Gadolinij sr:Гадолинијум fi:Gadolinium sv:Gadolinium th:แกโดลิเนียม uk:Гадоліній zh:钆