Gudermannian function
From Free net encyclopedia
Image:Gudermannian.png The Gudermannian function, named after Christoph Gudermann (1798 - 1852), relates the circular and hyperbolic trigonometric functions without resorting to complex numbers. It is defined by
<math>{\rm gd}(x)\,</math> <math>=\int_0^x \frac{dt}{\cosh t}</math> <math>=2\arctan \left(\tanh\frac{x}{2}\right)</math> <math>=2\arctan e^x-{\pi\over2}.</math>
Note that
- <math>\tanh\frac{x}{2} = \tan \frac{\mbox{gd}(x)}{2}.\,</math>
The following identities also hold:
- <math>\sinh(x)=\tan(\mbox{gd}(x))\ </math>
- <math>\cosh(x)=\sec(\mbox{gd}(x))\ </math>
- <math>\tanh(x)=\sin(\mbox{gd}(x))\ </math>
- <math>\mbox{sech}(x)=\cos(\mbox{gd}(x))\ </math>
- <math>\mbox{csch}(x)=\cot(\mbox{gd}(x))\ </math>
- <math>\coth(x)=\csc(\mbox{gd}(x))\ </math>
The inverse Gudermannian function is given by
<math>\operatorname{arcgd}(x)</math> <math>={\rm gd}^{-1}(x)=\int_0^x \frac{dt}{\cos t}\,</math> <math>=\operatorname{arccosh}(\sec x)=\operatorname{arctanh}(\sin x)\,</math> <math>=\ln\left(\sec(x)(1+\sin(x))\right)\,</math> <math>=\ln(\tan x+\sec x)=\ln\left(\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right)\,</math> <math>=\frac{1}{2}\ln\left(\frac{1+\sin x}{1-\sin x} \right).\,</math>
The derivatives of the Gudermannian and its inverse are
- <math>{d \over dx}\,\mbox{gd}(x)=\mbox{sech}(x),</math>
- <math>{d \over dx}\,\operatorname{arcgd}(x)=\sec(x).</math>
[edit]
See also
- hyperbolic secant distribution
- Mercator projection
- tangent half-angle formula
- tractrix
- trigonometric identity
[edit]
References
- CRC Handbook of Mathematical Sciences 5th ed. pp 323-5.
- Template:Mathworld