Internet shorthand notation

From Free net encyclopedia

Internet shorthand notation is a notation widely used on Internet sites, where typing complicated mathematical symbols is rather cumbersome.

Contents

Exponentials

Long-hand:

<math>e^{f\left(x,y,\dots\right)}</math>

Short-hand:

exp(f(x,y,...))

Most commonly:

e^f(x,y,...)

Limits

Long-hand:

<math>\lim_{r \to c} \left(f \left(r, x, \dots \right)\right)</math>

Short-hand:

lim(f(r,x,...),r,c)

where c can be a finite quantity, or ∞. The limit from the left is called llim, and the limit from the right rlim.

Most commonly:

lim_r->c f(r,x,...)

Sums

Long-hand:

<math>\sum_{r=a}^b f\left(x,r,\dots\right)</math>
<math>\sum_{r=a \to b} f\left(x,r,\dots\right)</math>

Short-hand:

sum(f(x,r,...),r,a,b)

Taylor/Maclaurin series

Long-hand:

The Taylor series of degree k for f(x,y,...) with respect to x about a.

Short-hand:

tayl(f(x,y,...),x,k,a)

Long-hand:

The Maclaurin series of degree k for f(x,y,...) with respect to x.

Short-hand:

macl(f(x,y,...),x,k)

Integrals

Long-hand:

<math>\int_a^b f\left(x\right) dx</math>

Short-hand:

int(f(x),x,a,b)

Derivatives

Long-hand:

<math>\frac{d\left(f\left(x\right)\right)}{dx}</math>

Short-hand:

d/dx(f(x))