Nielsen form
From Free net encyclopedia
Lagrange's Equations in Lagrangian mechanics are usually written in the form
- <math>
{d \over dt}{\partial{T}\over \partial{q'_j}}-{\partial{T}\over \partial q_j} = Q_j </math>
The Nielsen Form is an alternative formulation written as
- <math>
{\partial{T'}\over \partial{q'_j}}-2{\partial{T}\over \partial q_j} = Q_j </math>
These two forms are equivalent; this can easily be shown by the Chain rule. Notice that if
- <math>T = T(q_i, q'_i)</math>
then
- <math>
\begin{matrix} Q_j = {\partial{T'}\over \partial{q'_j}}-2{\partial{T}\over \partial q_j}
& = & {\partial \over \partial q'_j} \sum_{i} \left [ {\partial T \over \partial q_i}q'_i + {\partial T \over \partial q'_i}q_i \right ]-2{\partial{T}\over \partial q_j}\\ & = & \sum_{i} \left [ {\partial \over \partial q'_j} {\partial T \over \partial q_i} q'_i + {\partial \over \partial q'_j} {\partial T \over \partial q'_i}q_i \right ] + {\partial T \over \partial q_j} -2{\partial{T}\over \partial q_j}\\ & = & \sum_{i} \left [ {\partial \over \partial q_i} {\partial T \over \partial q'_j} q'_i + {\partial \over \partial q'_i} {\partial T \over \partial q'_j}q_i \right ] -{\partial{T}\over \partial q_j}\\ & = & {d \over dt} \left( {\partial T \over \partial q'_j} \right) -{\partial T \over \partial q_j}\\
\end{matrix}
</math> As desired.