Parseval's identity
From Free net encyclopedia
In functional analysis, Parseval's identity, also known as Parseval's equality, is the Pythagorean theorem for inner-product spaces. It states that if B is an orthonormal basis in a complete inner-product space (i.e. a Hilbert space), then
- <math>\|x\|^2=\langle x,x\rangle=\sum_{v\in B}\left|\langle x,v\rangle\right|^2.</math>
The origin of the name is in Parseval's theorem for Fourier series, which is a special case.
Parseval's identity can be proved using the Riesz-Fischer theorem.
[edit]
See also
[edit]
References
- Johnson & Riess, Numerical Analysis. ISBN 0-201-10392-3.
Template:Mathanalysis-stubde:Parsevalsche Gleichung es:Identidad de Parseval fi:Parsevalin identiteetti