Polylogarithm
From Free net encyclopedia
The polylogarithm (also known as Jonquiére's function) is a special function that is defined for all complex numbers s and z where |z|< 1 by:
- <math>
Li_s(z) \equiv \sum_{k=1}^\infty {z^k \over k^s}. </math>
The special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence's function) and trilogarithm respectively. The polylogarithm also arises in the closed form of the integral of the Fermi-Dirac distribution and the Bose-Einstein distribution and is sometimes known as the Fermi-Dirac integral or the Bose-Einstein integral. Polylogarithms should not be confused with polylogarithmic functions nor with the offset logarithmic integral which has a similar notation.
The polylogarithm is actually defined over a larger range of z than the above definition allows by the process of analytic continuation.
Contents |
Properties
In the important case where the parameter s is an integer, it will be represented by n (or -n when negative). It is often convenient to define μ = ln(z) where ln(z) is the principal branch of the natural logarithm Ln(z) so that -π < Im(μ) ≤ π. Also, all exponentiation will be assumed to be single valued. (e.g. zs = Exp(s ln(z))).
Depending on the parameter s, the polylogarithm may be multi-valued. The principal branch of the polylogarithm is chosen to be that for which Lis(z) is real for z real, 0 ≤ z ≤ 1 and is continuous except on the positive real axis, where a cut is made from z = 1 to ∞ such that the cut puts the real axis on the lower half plane of z. In terms of μ, this amounts to -π < arg(-μ) ≤ π. The fact that the polylogarithm may be discontinuous in μ can cause some confusion.
For z real and z ≥ 1 the imaginary part of the polylogarithm is Template:Ref harvard:
- <math>\textrm{Im}(Li_s(z)) = -{{\pi \mu^{s-1}}\over{\Gamma(s)}}.</math>
Going across the cut, if δ is an infinitesimally small positive real number, then:
- <math>\textrm{Im}(Li_s(z+i\delta)) = {{\pi \mu^{s-1}}\over{\Gamma(s)}}.</math>
The derivatives of the polylogarithm are:
- <math>z{\partial Li_s(z) \over \partial z} = Li_{s-1}(z)</math>
- <math>{\partial Li_s(e^\mu) \over \partial \mu} = Li_{s-1}(e^\mu).</math>
Particular values
See also the "Relationship to other functions" section below.
For integer values of s, we have the following explicit expressions:
- <math>Li_{1}(z) = -\textrm{Ln}\left(1-z\right)</math>
- <math>Li_{0}(z) = {z \over 1-z}</math>
- <math>Li_{-1}(z) = {z \over (1-z)^2}</math>
- <math>Li_{-2}(z) = {z(1+z) \over (1-z)^3}</math>
- <math>Li_{-3}(z) = {z(1+4z+z^2) \over (1-z)^4}.</math>
The polylogarithm for all negative integer values of s can be expressed as a ratio of polynomials in z (See series representations below). Some particular expressions for half-integer values of the argument are:
- <math>Li_{1}\left(1/2\right) = \textrm{Ln}(2)</math>
- <math>Li_{2}(1/2) = {1 \over 12}[\pi^2-6\textrm{Ln}^2(2)]</math>
- <math>Li_{3}(1/2) = {1 \over 24}[4\textrm{Ln}^3(2)-2\pi^2\textrm{Ln} (2)+21\,\zeta(3)]</math>
where ζ is the Riemann zeta function. No similar formulas of this type are known for higher orders Template:Ref harvard
Alternate expressions
- The integral of the Bose-Einstein distribution is expressed in terms of a polylogarithm:
- <math>
Li_{s+1}(z) \equiv {1 \over \Gamma(s+1)} \int_0^\infty {t^s \over e^t/z-1} dt. </math>
- This converges for Re(s) > 0 and all z except for z real and ≥ 1. The polylogarithm in this context is sometimes referred to as a Bose integral or a Bose-Einstein integral.
- The integral of the Fermi-Dirac distribution is also expressed in terms of a polylogarithm:
- <math>
-Li_{s+1}(-z) \equiv {1 \over \Gamma(s+1)} \int_0^\infty {t^s \over e^t/z+1} dt. </math>
- This converges for Re(s) > 0 and all z except for z real and < (−1). The polylogarithm in this context is sometimes referred to as a Fermi integral or a Fermi-Dirac integral. Template:Ref harvard
- The polylogarithm may be rather generally represented by a Hankel contour integral Template:Ref harvard.
As long as the t = μ pole of the integrand does not lie on the non-negative real axis, and s ≠ 1, 2, 3, …, we have:
- <math>
Li_s(e^\mu)={{-\Gamma(1-s)}\over{2\pi i}}\oint_H {{(-t)^{s-1}}\over{e^{t-\mu}-1}}dt. </math>
- where H represents the Hankel contour. The integrand has a cut along the real axis from zero to infinity, with the real axis being on the lower half of the sheet (Im(t) ≤ 0). For the case where μ is real and non-negative, we can simply add the limiting contribution of the pole:
- <math>
Li_s(e^\mu)=-{{\Gamma(1-s)}\over{2\pi i}}\oint_H {{(-t)^{s-1}}\over{e^{t-\mu}}-1}dt + 2\pi i R </math>
- where R is the residue of the pole:
- <math>
R = {{\Gamma(1-s)(-\mu)^{s-1}}\over{2\pi}}. </math>
- The square relationship is easily seen from the defining equation (see also Template:Ref harvard, Template:Ref harvard:
- <math>
Li_s(-z) + Li_s(z) = 2^{1-s} ~ Li_s(z^2). </math>
- Note that Kummer's function obeys a very similar duplication formula.
Relationship to other functions
- For z = 1 the polylogarithm reduces to the Riemann zeta function
- <math>Li_s(1) = \zeta(s)~~~~~~~~~~~~~(\textrm{Re}(s)>1). </math>
- The polylogarithm is related to Dirichlet eta function and
the Dirichlet beta function:
- <math>
- <math>
- The polylogarithm is equivalent to the Fermi-Dirac integral
Template:Ref harvard
- <math>
- The polylogarithm is a special case of the Lerch Transcendent
Template:Ref harvard
- <math>Li_s(z)=z~\Phi(z,s,1).</math>
- The polylogarithm is related to the Hurwitz zeta function by:
- <math>
- <math>\textrm{Re}(s)>1, \textrm{Im}(x)\ge 0, 0 \le \textrm{Re}(x) < 1</math>
- <math>\textrm{Re}(s)>1, \textrm{Im}(x)\le 0, 0 < \textrm{Re}(x) \le 1.</math>
- <math>
- <math>
- Using the relationship between the Hurwitz zeta function and the Bernoulli polynomials:
- <math>
- <math>
- <math>
- <math>
- <math>
- The polylogarithm with pure imaginary μ may be expressed in terms of Clausen functions Cis(θ) and Sis(θ)
Template:Ref harvard,
Template:Ref harvard
- <math>
- The Inverse Tangent Integral Tis(z)
Template:Ref harvard can be expressed in terms of polylogarithms:
- <math>
- The Legendre chi function χs(z)
Template:Ref harvard,
Template:Ref harvard
can be expressed in terms of polylogarithms:
- <math>
- The polylogarithm may be expressed as a series of Debye functions Zn(z)
Template:Ref harvard
- <math>
- <math>
Series representations
- We may represent the polylogarithm as a power series about μ = 0 as follows:
Template:Ref harvard
Consider the Mellin transform:
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- The defining equation may be extended to negative values of the parameter s using a Hankel contour integral
Template:Ref harvard
Template:Ref harvard:
- <math>
- <math>
- <math>
- For negative integer s, the polylogarithm may be expressed as a series involving the Eulerian numbers
- <math>
- Another explicit formula for negative integer s is
Template:Ref harvard:
- <math>
Limiting behavior
The following limits hold for the polylogarithm Template:Ref harvard:
- <math>
\lim_{|z|\rightarrow 0} Li_s(z) = 0 </math>
- <math>
\lim_{s \rightarrow \infty} Li_s(z) = z </math>
- <math>
\lim_{\mathrm{Re}(\mu) \rightarrow \infty} Li_s(e^\mu) = -{\mu^s \over \Gamma(s+1)} ~~~~~~(s\ne -1, -2,-3,\ldots) </math>
- <math>
\lim_{\mathrm{Re}(\mu) \rightarrow \infty} Li_{n}(e^\mu) = -(-1)^ne^{-\mu} ~~~~~~(n=1,2,3,\ldots) </math>
- <math>
\lim_{|\mu|\rightarrow 0} Li_s(e^\mu) = \Gamma(1-s)(-\mu)^s~~~~~~(s<1) </math>
The dilogarithm
The dilogarithm is just the polylogarithm with <math>s=2</math>. An alternate integral expression for the dilogarithm is:
- <math>
Li_{2}(z) \equiv -\int_0^z{\ln (1-t) \over t} dt. </math>
The Abel identity for the dilogarithm is given by:
- <math>\ln(1-x)\ln(1-y)=
\mbox{Li}_2 \left( \frac{x}{1-y} \right) +\mbox{Li}_2 \left( \frac{y}{1-x} \right) -\mbox{Li}_2 \left( x \right) -\mbox{Li}_2 \left( y \right) -\mbox{Li}_2 \left( \frac{xy}{(1-x)(1-y)} \right) </math>
History note: Don Zagier remarked that "The dilogarithm is the only mathematical function with a sense of humor."
Polylogarithm ladders
Leonard Lewin discovered a remarkable and broad generalization of a number of classical relationships on the polylogarithm for special values. These are now called polylogarithm ladders. Define <math>\rho=\left(\sqrt{5}-1\right)/2</math> as the reciprocal of the golden ratio. Then two simple examples of results from ladders include
- <math>Li_2(\rho^6)=4Li_2(\rho^3)+3Li_2(\rho^2)-6Li_2(\rho)+\frac{7\pi^2}{30}</math>
given by Template:Ref harvard and
- <math>Li_2(\rho)=\frac{\pi^2}{10} - \log^2\rho</math>
given by Landen. Polylogarithm ladders occur naturally and deeply in K-theory.
References
- Template:Note labelTemplate:Cite book
- Template:Note label{{cite journal
|last = Bailey|first=David|coauthors= Borwein, Peter B., and Plouffe, Simon|authorlink=David H. Bailey|year = 1997 |month = April|title = On the Rapid Computation of Various Polylogarithmic Constants |journal = Mathematics of Computation|volume = 66|issue = 218|pages = 903-913 |url = http://crd.lbl.gov/~dhbailey/dhbpapers/digits.pdf }}
- Template:Note labelTemplate:Cite web
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite web
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite journal
- Template:Note label{{cite journal
|first = H.S.M.|last = Coxeter|authorlink = Harold Scott MacDonald Coxeter |year = 1935|title = The functions of Schlafli and Lobatschefsky |journal = Quarterly Journal of Mathematics (Oxford)|volume = 6 |pages = 13-29 }}
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite web
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite book (see § 1.2, pp 23-24)
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite journal
- Template:Note labelTemplate:Cite book
- Template:Note labelTemplate:Cite webfr:Fonction polylogarithme