Q test

From Free net encyclopedia

In statistics, the Q test is used for identification of outliers. This test should be used sparingly and never more than once in a data set. To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined:

<math>Q=\frac{\mathrm{gap}}{\mathrm{range}}.</math>

If Qcalculated > Qtable then reject the questionable point.

Table

Number of values:  3
4
5
6
7
8
9
10
Q90%:
0.941
0.765
0.642
0.560
0.507
0.468
0.437
0.412
Q95%:
0.970
0.829
0.710
0.625
0.568
0.526
0.493
0.466

Example

For the data:

<math>0.189, 0.169, 0.187, 0.183, 0.186, 0.182, 0.181, 0.184, 0.181, 0.177</math>

Arranged in increasing order:

<math>0.169, 0.177, 0.181, 0.181, 0.182, 0.183, 0.184, 0.186, 0.187, 0.189</math>

Outlier is 0.169. Calculate Q:

<math>Q=\frac{\mathrm{gap}}{\mathrm{range}}=\frac{(0.177-0.169)}{(0.189-0.169)}=0.400.</math>

With 10 observations at 90% confidence, Qcalculated < Qtable. Therefore keep 0.169 at 90% confidence.it:test Q