Quater-imaginary base

From Free net encyclopedia

Numeral systems

List of numeral system topics

Hindu-Arabic systemAbjad
Armenian
Babylonian
Brahmi
Chinese
Cyrillic
Egyptian
Etruscan
Ge'ez
GreekHebrew
Japanese
Khmer
Korean
Mayan
Roman

D'ni (fictitious)
Positional systems
with various bases:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20, 24, 26, 27, 30, 32, 36, 60, 64

1, -2, -3, Balanced ternary, mixed, Factoradic, Fibonacci coding, bijective, 2i, φ

edit

The quater-imaginary numeral system was first proposed by Donald Knuth in 1955, in a submission to a high-school science talent search. It is a non-standard positional numeral system which uses the imaginary number 2i as base. By analogy with the quaternary numeral system, it is able to represent every complex number using only the digits 0, 1, 2, and 3, without a sign.

Contents

Powers of 2i

Note that i−1 = −i.

<math>n</math><math>(2i)^n</math>
−81/256
−71/128 i
−6−1/64
−5−1/32 i
−41/16
−31/8 i
−2−1/4
−1−1/2 i
01
12i
2−4
3−8i
416
532i
6−64
7−128i
8256

Decimal to quater-imaginary

Base 10Base 2iBase 10Base 2iBase 10Base 2iBase 10Base 2i
11−11031i10.2-1i0.2
22−21022i10.0-2i1030.0
33−31013i20.2-3i1030.2
410300−41004i20.0-4i1020.0
510301−52035i30.2-5i1020.2
610302−62026i30.0-6i1010.0
710303−72017i103000.2-7i1010.2
810200−82008i103000.0-8i1000.0
910201−93039i103010.2-9i1000.2
1010202−1030210i103010.0-10i2030.0
1110203−1130111i103020.2-11i2030.2
1210100−1230012i103020.0-12i2020.0
1310101−13103000313i103030.2-13i2020.2
1410102−14103000214i103030.0-14i2010.0
1510103−15103000115i102000.2-15i2010.2
1610000−16103000016i102000.0-16i2000.0

Examples

<math>5 = 16 + (3\cdot-4) + 1 = 10301_{2i}</math>
<math>i = 2i + 2\left(-\frac{1}{2}i\right) = 10.2_{2i}</math>
<math>11210.31_{2i} = 1(16) + 1(-8i) + 2(-4) + 1(2i) + 3\left(-\frac{1}{2}i\right) + 1\left(-\frac{1}{4}\right) = 7 \frac{3}{4} - 7 \frac{1}{2}i</math>

References

  • D. Knuth. The Art of Computer Programming. Volume 2, 3rd Edition. Addison-Wesley. pp. 205, "Positional Number Systems"