Rayleigh distribution

From Free net encyclopedia

Template:Probability distribution</math>|

 median     =<math>\sigma\sqrt{\ln(4)}\,</math>|
 mode       =<math>\sigma\,</math>|
 variance   =<math>\frac{4 - \pi}{2} \sigma^2</math>|
 skewness   =<math>\frac{2\sqrt{\pi}(\pi - 3)}{(4-\pi)^{3/2}}</math>|
 kurtosis   =<math>-\frac{6\pi^2 - 24\pi +16}{(4-\pi)^2}</math>|
 entropy    =<math>1+\ln\left(\frac{1}{\sqrt{2}\sigma^3}\right)+\frac{\gamma}{2}</math>|
 mgf        =<math>1+\sigma t\,e^{\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}

\left(\textrm{erf}\left(\frac{\sigma t}{\sqrt{2}}\right)\!+\!1\right)</math>|

 char       =<math>1\!-\!\sigma te^{-\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}\!\left(\textrm{erfi}\!\left(\frac{\sigma t}{\sqrt{2}}\right)\!-\!i\right)</math>|

}}

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution. It usually arises when a two dimensional vector (e.g. wind velocity) has its two orthogonal components normally and independently distributed. The absolute value (e.g. wind speed) will then have a Rayleigh distribution. The distribution may also arise in the case of random complex numbers whose real and imaginary components are normally and independently distributed. The absolute value of these numbers will then be Rayleigh distributed.

The probability density function is

<math>f(x|\sigma) = \frac{x \exp\left(\frac{-x^2}{2\sigma^2}\right)}{\sigma^2}</math>

The characteristic function is given by:

<math>\varphi(t)=</math>
<math>1\!-\!\sigma te^{-\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}\!\left(\textrm{erfi}\!\left(\frac{\sigma t}{\sqrt{2}}\right)\!-\!i\right)</math>

where <math>erfi(z)</math> is the complex error function. The moment generating function is given by:

<math>M(t)=\,</math>
<math>1+\sigma t\,e^{\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}

\left(\textrm{erf}\left(\frac{\sigma t}{\sqrt{2}}\right)\!+\!1\right)</math>

where <math>erf(z)</math> is the error function. The raw moments are then given by:

<math>\mu_k=\sigma^k2^{k/2}\,\Gamma(1+k/2)\,</math>

where <math>\Gamma(z)</math> is the Gamma function. The moments may be used to calculate:

Mean: <math>\sigma \sqrt{\frac{\pi}{2}}</math>

Variance: <math>\frac{4-\pi}{2} \sigma^2</math>

Skewness: <math>\frac{2\sqrt{\pi}(\pi - 3)}{(4-\pi)^{3/2}}</math>

Kurtosis: <math>- \frac{6\pi^2 - 24\pi +16}{(4-\pi)^2}</math>

Parameter estimation

The maximum likelihood estimate of the <math>\sigma</math> parameter is given by:

<math>\sigma\approx\sqrt{\frac{1}{2N}\sum_{i=0}^N x_i^2}</math>

Related distributions

  • <math>R \sim \mathrm{Rayleigh}(\sigma^2)</math> is a Rayleigh distribution if <math>R = \sqrt{X^2 + Y^2}</math> where <math>X \sim N(0, \sigma^2)</math> and <math>Y \sim N(0, \sigma^2)</math> are two independent normal distributions.
  • If <math>R \sim \mathrm{Rayleigh}(1)</math> then <math>R^2</math> has a chi-square distribution with two degrees of freedom: <math>R^2 \sim \chi^2_2</math>
  • If <math>X</math> has an exponential distribution <math>X \sim \mathrm{Exponential}(x|\lambda)</math> then <math>Y=\sqrt{2X\sigma\lambda} \sim \mathrm{Rayleigh}(y|\sigma)</math>.
  • If <math>R \sim \mathrm{Rayleigh}(\sigma^2)</math> then <math>\sum_{i=1}^N R_i^2</math> has a gamma distribution with parameters <math>N</math> and <math>2\sigma^2</math>: <math>[Y=\sum_{i=1}^N R_i^2] \sim \Gamma(N,2\sigma^2)</math>.

See also

ko:레일리 분포