Clausen function
From Free net encyclopedia
In mathematics, the Clausen function is defined by the following integral:
- <math>\operatorname{Cl}_2(\theta) = - \int_0^\theta \log|2 \sin(t/2)| \,dt.</math>
Contents |
General definition
More generally, one defines
- <math>\operatorname{Cl}_s(\theta) = \sum_{n=1}^\infty \frac{\sin(n\theta)}{n^s}</math>
which is valid for complex s with Re s >1. The definition may be extended to all of the complex plane through analytic continuation.
Relation to polylogarithm
It is related to the polylogarithm by
- <math>\operatorname{Cl}_s(\theta)
= \Im (\operatorname{Li}_s(e^{i \theta}))</math>.
Kummer's relation
Ernst Kummer and Rogers give the relation
- <math>\operatorname{Li}_2(e^{i \theta}) = \zeta(2) - \theta(2\pi-\theta) + i\operatorname{Cl}_2(\theta)</math>
valid for <math>0\leq \theta \leq 2\pi</math>.
Relation to Dirichlet L-functions
For rational values of <math>\theta/\pi</math> (that is, for <math>\theta/\pi=p/q</math> for some integers p and q), the function <math>\sin(n\theta)</math> can be understood to represent a periodic orbit of an element in the cyclic group, and thus <math>\operatorname{Cl}_s(\theta)</math> can be expressed as a simple sum involving the Hurwitz zeta function. This allows relations between certain Dirichlet L-functions to be easily computed.
Series acceleration
A series acceleration for the Clausen function is given by
- <math>\frac{\operatorname{Cl}_2(\theta)}{\theta} =
1-\log|\theta| - \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^n </math>
which holds for <math>|\theta|<2\pi</math>. Here, <math>\zeta(s)</math> is the Riemann zeta function. A more rapidly convergent form is given by
- <math>\frac{\operatorname{Cl}_2(\theta)}{\theta} =
3-\log\left[|\theta| \left(1-\frac{\theta^2}{4\pi^2}\right)\right] -\frac{2\pi}{\theta} \log \left( \frac{2\pi+\theta}{2\pi-\theta}\right) +\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^n </math>
Convergence is aided by the fact that <math>\zeta(n)-1</math> approaches zero rapidly for large values of n. Both forms are obtainable through the types of resummation techniques used to obtain rational zeta series. (ref. Borwein, etal. 2000, below).
Special values
Some special values include
- <math>\operatorname{Cl}_2\left(\frac{\pi}{2}\right)=K</math>
where K is Catalan's constant.
References
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN 486-61272-4 . See section 27.8
- Leonard Lewin, (Ed.). Structural Properties of Polylogarithms (1991) American Mathematical Society, Providence, RI. ISBN 0-8218-4532-2
- Template:Cite journalfr:Fonction de Clausen