History of science
From Free net encyclopedia
Science is a body of verifiable empirical knowledge, a global community of scholars, and a set of techniques for investigating the universe known as the scientific method. The history of science traces these phenomena and their precursors back in time, all the way to human prehistory.
The Scientific Revolution of the sixteenth and early seventeenth century saw the inception of modern scientific methods to guide the evaluation of knowledge. This change is considered to be so fundamental that older inquiries are now known as pre-scientific. Still, many place ancient and medieval natural philosophy clearly within the scope of the history of science.
The history of mathematics, history of technology, and history of philosophy are covered in other articles. Mathematics is closely related to, but distinct from science (at least in the modern conception). Technology concerns the creative process of designing useful objects and systems, which differs from the search for empirical truth. Philosophy differs from science in that, while both the natural and the social sciences attempt to base their theories on established fact, philosophy also enquires about other areas of knowledge, notably ethics. In practice, each of these fields is heavily used by the others as an external tool.
Contents |
Theories and sociology of the history of science
Much of the study of the history of science has been devoted to answering questions about what science is, how it functions, and whether it exhibits large-scale patterns and trends. The sociology of science in particular has focused on the ways in which scientists work, looking closely at the ways in which they "produce" and "construct" scientific knowledge. Since the 1960s, a common trend in the science studies (the study of the sociology and history of science) has been to emphasize the "human component" to scientific knowledge, and to de-emphasize the view that scientific data is self-evident, value-free, and context-free.
A major subject of concern and controversy in the philosophy of science has been to inquire about the nature of theory change in science. Three philosophers in particular who represent the primary poles in this debate have been Karl Popper, who argued that scientific knowledge is progressive and cumulative; Thomas Kuhn, who argued that scientific knowledge moves through "paradigm shifts" and is not necessarily progressive; and Paul Feyerabend, who argued that scientific knowledge is not cumulative or progressive, and that there can be no demarcation between science and any other form of investigation.
Since the publication of Kuhn's The Structure of Scientific Revolutions in 1962, there has been much debate in the academic community over the meaning and objectivity of "science." Often, but not always, a conflict over the "truth" of science has split along the lines of those in the scientific community and those in the social sciences or humanities (for example, the "Science wars").
Pre-experimental "science"
In the West, from antiquity up to the time of the Scientific Revolution, inquiry into the workings of the universe was known as natural philosophy, and those engaged in it were known as natural philosophers. This included some fields of study which are no longer considered scientific. Bertrand Russell's History of Philosophy gives a good account of the historical development of (natural) philosophy. In many cases, systematic learning about the natural world was a direct outgrowth of religion, often as a project of a particular religious community.
One important feature of "pre-scientific" inquiry (whether in the West or elsewhere) was reluctance to engage in experiment. For example, Aristotle, one of the most prolific natural philosophers of antiquity, made countless observations of nature, especially the habits and attributes of plants and animals. Aristotle focused on categorizing. He also made many observations on the large-scale workings of the universe, which led to the development of a comprehensive theory of physics; see Physics (Aristotle). Yet, until the period of the Scientific Revolution, the utility of experiment was unproven, which means that theories were never empirically tested. In Taoist philosophy, for example, the tradition of wu wei (action without action), would deprecate the setting up of artificial conditions in an experiment in fear they would produce contrived results that could never describe nature as it is in the world around us.
Early cultures
In prehistoric times, advice and knowledge was passed from generation to generation in an oral tradition. The development of writing enabled knowledge to be stored and communicated across generations with much greater fidelity. Combined with the development of agriculture, which allowed for a surplus of food, it became possible for early civilizations to develop, because more time could be devoted to tasks other than survival.
Many ancient civilizations collected astronomical information in a systematic manner through simple observation. Though they had no knowledge of the real physical structure of the planets and stars, many theoretical explanations were proposed.
Basic facts about human physiology were known in some places, and alchemy was practiced in several civilizations. Considerable observation of macrobiotic flora and fauna was also performed.
The Middle Ages
With the loss of the Western Roman Empire, much of Europe lost contact with the knowledge of the past. While the Byzantine Empire still held learning centers such as Alexandria and Constantinople, Western Europe's knowledge was concentrated in monasteries. Philosophical and scientific teaching of the period was based upon few copies and commentaries of ancient Greek texts that remained in Western Europe.
Islamic science
Image:Islamic MedText c1500.jpgMeanwhile, in the Middle East, Greek philosophy was able to find some support by the newly created Arab Caliphate (Empire). With the spread of Islam in the 7th and 8th centuries, a period of Islamic scholarship lasted until the 14th century. This scholarship was aided by several factors. The use of a single language, Arabic, allowed communication without need of a translator. Access to Greek and Roman texts from the Byzantine Empire along with Indian sources of learning provided Islamic scholars a knowledge base to build upon. In addition, there was the Hajj. This annual pilgrimage to Mecca facilitated scholarly collaboration by bringing together people and new ideas from all over the Islamic world.
In Islamic versions of early scientific method, ethics played an important role. During this period the concepts of citation and peer review were developed. In mathematics, the Persian scholar Muḥammad ibn Mūsā al-Ḵwārizmī gave his name to what is now called an algorithm; the term algebra is derived from al-jabr, the beginning of the title of one of his publications. Sabian mathematician Al-Batani (850-929) contributed to astronomy and mathematics and Persian scholar Al-Razi to chemistry. The fruits of these contributions can be seen in Damascus steel (wootz steel), and the Baghdad Battery. Arab alchemy inspired Roger Bacon, and later Isaac Newton. In astronomy, Al-Batani improved the measurements of Hipparchus, preserved in the translation of the Greek Hè Megalè Syntaxis (The great treatise) translated as Almagest. Al-Batani also improved the precision of the measurement of the precession of the earth's axis.
Medieval Indian science
- Main articles: Indian science and Indian science and technology
Before the Middle Ages, Indian philosophers in ancient India developed atomic theories, which included formulating ideas about the atom in a systematic manner and propounding ideas about the atomic constitution of the material world. The principle of relativity was also available in an early embryonic form in the Indian philosophical concept of "sapekshavad". The literal translation of this Sanskrit word is "theory of relativity" (not to be confused with Einstein's theory of relativity).
By the beginning of the Middle Ages, the wootz, crucible and stainless steels were invented in India. The spinning wheel used for spinning thread or yarn from fibrous material such as wool or cotton was invented in the early Middle Ages. By the end of the middle ages, iron rockets were developed in the kingdom of Mysore in South India.
Aryabhata in 499 presented a heliocentric solar system of gravitation where he presented astronomical and mathematical theories in which the Earth was taken to be spinning on its axis and the periods of the planets were given as elliptical orbits with respect to the sun. He also believed that the moon and planets shine by reflected sunlight and that the orbits of the planets are ellipses. He carried out accurate calculations of astronomical constants based on this system, such as the periods of the planets, the circumference of the earth, the solar eclipse and lunar eclipse, the time taken for a single rotation of the Earth on its axis, the length of earth's revolution around the sun, and the longitudes of planets using eccentrics and epicycles. He also introduced a number of trigonometric functions (including sine, versine, cosine and inverse sine), trigonometric tables, and techniques and algorithms of algebra. Arabic translations of his texts were available in the Islamic world by the 8th-10th century.
In the 7th century, Brahmagupta briefly described the law of gravitation, and recognized gravity as a force of attraction. He also lucidly explained the use of zero as both a placeholder and a decimal digit, along with the Hindu-Arabic numerals now used universally throughout the world. Arabic translations of his texts (around 770) introduced this number system to the Islamic world, where it was adapted as Arabic numerals. Islamic scholars carried knowledge of this number system to Europe by the 12th century and it has now displaced all older number systems throughout the world.
The Siddhanta Shiromani was a mathematical astronomy text written by Bhaskara in the 12th century. The 12 chapters of the first part cover topics such as: mean longitudes of the planets; true longitudes of the planets; the three problems of diurnal rotation; syzygies; lunar eclipses; solar eclipses; latitudes of the planets; risings and settings; the moon's crescent; conjunctions of the planets with each other; conjunctions of the planets with the fixed stars; and the patas of the sun and moon. The second part contains thirteen chapters on the sphere. It covers topics such as: praise of study of the sphere; nature of the sphere; cosmography and geography; planetary mean motion; eccentric epicyclic model of the planets; the armillary sphere; spherical trigonometry; ellipse calculations; first visibilities of the planets; calculating the lunar crescent; astronomical instruments; the seasons; and problems of astronomical calculations.
From the 12th century, Bhaskara and various Keralese mathematicians first conceived differential calculus, mathematical analysis, trigonometric series, floating point numbers, and concepts foundational to the overall development of calculus.
European renaissance from the 12th century
Template:Main articles Image:Map of Medieval Universities.JPG An intellectual revitalization of Europe started with the birth of medieval universities in the 12th century. The contact with the Islamic world in Spain and Sicily after the Reconquista and during the Crusades allowed Europeans access to preserved copies of the Ancient Greek and Roman works along with the works of Islamic philosophers, specially Averroes. The European universities aided materially in the translation and propagation of these texts and started a new infrastructure which was needed for scientific communities.
At the beginning of the 13th century there were reasonably accurate Latin translations of the main works of almost all the intellectually crucial ancient authors. By then, the natural philosophy contained in these texts began to be extended by notable scholastics such as Robert Grosseteste, Roger Bacon, Albertus Magnus and Duns Scotus. Precursors of the modern scientific method can be seen already in Grosseteste's emphasis on mathematics as a way to understand nature, and in the empirical approach admired by Bacon. According to Pierre Duhem, the Condemnation of 1277 led to the birth of modern science, because it forced thinkers to break from relying so much on Aristotle, and to think about the world in new ways.
The first half of the 14th century saw the scientific work of great thinkers. William of Ockham introduced the principle of parsimony: philosophy should only concern itself with subjects on whom it could achieve real knowledge. This should lead to a decline in fruitless debates and move natural philosophy toward science. Scholars such as Jean Buridan and Nicolas Oresme started to question the received wisdom of Aristotle's mechanics. In particular, Buridan developed the theory of impetus which was a first step towards the modern concept of inertia.
Image:Vitruvian.jpg In 1348, the Black Death and other disasters sealed a sudden end to the previous period of massive philosophic and scientific development. Yet, the rediscovery of ancient texts was improved after the Fall of Constantinople in 1453, when many Byzantine scholars had to seek refuge in the West. Meanwhile, the invention of printing was to have great effect on European society. The facilitated dissemination of the printed word democratized learning and allowed a faster propagation of new ideas. These developments paved the way for the Scientific Revolution, which may also be understood as a resumation of the process of scientific change, halted at the start of the Black Death.
The Scientific Revolution
Image:GodfreyKneller-IsaacNewton-1689.jpg
Modern science in Europe began in a period of great upheaval. The Protestant Reformation, the discovery of the Americas by Christopher Columbus, the Fall of Constantinople, the Spanish Inquisition, but also the re-discovery of Aristotle in the twelfth and thirteenth centuries presaged large social and political changes. Thus, a suitable environment was created in which it became possible to question scientific doctrine, in much the same way that Martin Luther and John Calvin questioned religious doctrine. The works of Ptolemy (astronomy), Galen (medicine), and Aristotle (physics) were found not always to match everyday observations. For example, an arrow flying through the air after leaving a bow contradicts Aristotle's laws of motion, which say that a moving object must be constantly under influence of an external force, as the natural state of earthly objects is to be at rest. Work by Vesalius on human cadavers also found problems with the Galenic view of anatomy.
Image:1543,AndreasVesalius'Fabrica,BaseOfTheBrain.jpg
The willingness to question previously held truths and search for new answers resulted in a period of major scientific advancements, now known as the Scientific Revolution. The Scientific Revolution is held by most historians to have begun in 1543, when De Revolutionibus, by the astronomer Nicolaus Copernicus, was first printed. The thesis of this book was that the Earth moved around the Sun. The period culminated with the publication of the Philosophiae Naturalis Principia Mathematica in 1687 by Isaac Newton.
Other significant scientific advances were made during this time by Galileo Galilei, Edmond Halley, Robert Hooke, Christiaan Huygens, Johannes Kepler, Gottfried Leibniz, and Blaise Pascal. In philosophy, major contributions were made by Francis Bacon, Sir Thomas Browne, René Descartes, and Thomas Hobbes. The basics of scientific method were also developed: the new way of thinking emphasized experimentation and reason over traditional considerations.
Modern science
Image:Einstein patentoffice.jpg The Scientific Revolution established science as the preeminent source for the growth of knowledge. During the 19th century, the practice of science became professionalized and institutionalized in ways which would continue through the 20th century, as the role of scientific knowledge grew and became incorporated with many aspects of the functioning of nation-states.
Natural sciences
Physics
The Scientific Revolution is a convenient boundary between ancient thought and classical physics. Nicolaus Copernicus revived the heliocentric model of the solar system first devised by Aristarchus of Samos. This was followed by the first known model of planetary motion given by Kepler in the early 17th century, which proposed that the planets follow elliptical orbits, with the Sun at one focus of the ellipse. Also, Galileo pioneered the use of experiment to validate physical theories, a key idea in scientific method. Image:James Clerk Maxwell.jpg In 1687, Isaac Newton published the Principia Mathematica, detailing two comprehensive and successful physical theories: Newton's laws of motion, which lead to classical mechanics; and Newton's Law of Gravitation, which describes the fundamental force of gravity. The behavior of electricity and magnetism was studied by Faraday, Ohm, and others during the early 19th century. These studies led to the unification of the two phenomena into a single theory of electromagnetism, by Maxwell (known as Maxwell's equations). Image:Universe expansion.png The beginning of the 20th century brought the start of a revolution in physics. The long-held theories of Newton were shown not to be correct in all circumstances. Beginning in 1900, Max Planck, Albert Einstein, Niels Bohr and others developed quantum theories to explain various anomalous experimental results, by introducing discrete energy levels. Not only did quantum mechanics show that the laws of motion did not hold on small scales, but even more disturbingly, the theory of general relativity, proposed by Einstein in 1915, showed that the fixed background of spacetime, on which both Newtonian mechanics and special relativity depended, could not exist. In 1925, Werner Heisenberg and Erwin Schrödinger formulated quantum mechanics, which explained the preceding quantum theories. The observation by Edwin Hubble in 1929 that the speed at which galaxies recede positively correlates with their distance, led to the understanding that the universe is expanding, and the formulation of the Big Bang theory by George Gamow.
Further developments took place during World War II, which led to the practical application of radar and the development and use of the atomic bomb. Though the process had begun with the invention of the cyclotron by Ernest O. Lawrence in the 1930s, physics in the postwar period entered into a phase of what historians have called "Big Science", requiring massive machines, budgets, and laboratories in order to test their theories and move into new frontiers. The primary patron of physics became state governments, who recognized that the support of "basic" research could often lead to technologies useful to both military and industrial applications. Currently, general relativity and quantum mechanics are inconsistent with each other, and efforts are underway to unify the two.
Chemistry
Image:LinusPauling.jpeg The history of chemistry begins with the distinction of chemistry from alchemy by Robert Boyle in his work The Skeptical Chymist (1661). It can also be dated to Antoine Lavoisier's discovery of oxygen and the law of conservation of mass, which refuted phlogiston theory. Proof that all matter is made of atoms, which are the smallest indestructible part of matter, was provided by John Dalton in 1803. He also formulated the law of mass relationships. In 1869, Dmitry Mendeleyev composed his periodic table of elements on the basis of Dalton's discoveries.
The synthesis of urea by Friedrich Wöhler opened a new research field in chemistry, and by the end of the 19th century, scientists were able to synthesize hundreds of organic compounds. The later part of the nineteenth century saw the exploitation of the Earth's petrochemicals, after the exhaustion of the oil supply from whaling. By the twentieth century, systematic production of refined materials provided a ready supply of products which provided not only energy, but also synthetic materials for clothing, medicine, and everyday disposable resources. The twentieth century also saw the integration of physics and chemistry, with chemical properties explained as the result of the electronic structure of the atom. Linus Pauling's book on The Nature of the Chemical Bond used the principles of quantum mechanics to deduce bond angles in ever-more complicated molecules. Pauling's work culminated in the physical modelling of DNA, the secret of life (in the words of Francis Crick, 1953). In the same year, the Miller-Urey experiment demonstrated in a simulation of primordial processes, that basic constituents of proteins, simple amino acids, could themselves be built up from simpler molecules.
Geology
Chinese polymath Shen Kua (1031 - 1095) was the first to formulate hypotheses for the process of land formation. Based on his observation of fossils in a geological stratum in a mountain hundreds of miles from the ocean, he deduced that the land was formed by erosion of the mountains and by deposition of silt.
Theophrastus' work on rocks Peri lithōn remained authoritative for millennia: its interpretation of fossils was not overturned until after the Scientific Revolution. During the 1700s Jean-Etienne Guettard and Nicolas Desmarest hiked central France and recorded their observations on geological maps; Guettard recorded the first observation of the volcanic origins of this part of France. James Hutton recorded his Theory of the Earth in 1788, which would later be referred to as Uniformitarianism. In 1811, Georges Cuvier and Alexandre Brongniart published their explanation of the antiquity of the Earth, inspired by Cuvier's discovery of fossil elephant bones in Paris. They formulated the principle of stratigraphic succession of the layers of the earth. Charles Lyell's Principles of Geology reiterated Hutton's Uniformitarianism, which influenced Charles Darwin.
In the 20th century, the main development has been the theory of plate tectonics in the 1960s. Plate tectonic theory (which revolutionized The theory the Earth sciences) arose out of two separate geological observations: seafloor spreading and continental drift.
Astronomy
Advances in astronomy and in optical systems in the 19th century resulted in the first observation of an asteroid (Ceres) in 1801, and the discovery of Neptune in 1846.
George Gamow, Ralph Alpher, and Robert Hermann had calculated that there should be evidence for a Big Bang in the background temperature of the universeTemplate:Fn. In 1964, Arno Penzias and Robert WilsonTemplate:Fn discovered a 3 kelvin background hiss in their Bell Labs radiotelescope, which was evidence for this hypothesis, and formed the basis for a number of results that helped determine the age of the universe.
Supernova SN1987A was observed by astronomers on Earth both visually, and in a triumph for neutrino astronomy, by the solar neutrino detectors at Kamiokande. But the solar neutrino flux was a fraction of its theoretically-expected value. This discrepancy forced a change in some values in the standard model for particle physics.
Biology, medicine, and genetics
Template:Main articles Image:Dna-split.png
In 1847, Hungarian physician Ignác Fülöp Semmelweis dramatically reduced the occurrency of puerperal fever by the simple experiment of requiring physicians to wash their hands before attending to women in childbirth. This discovery predated the germ theory of disease. However, Semmelweis' findings were not appreciated by his contemporaries and came into use only with discoveries by British surgeon Joseph Lister, who in 1865 proved the principles of antisepsis. Lister's work was based on the important findings by French biologist Louis Pasteur. Pasteur was able to link microorganisms with disease, revolutionizing medicine. He also devised one of the most important methods in preventive medicine, when in 1880 he produced a vaccine against rabies. Pasteur invented the process of pasteurization, to help prevent the spread of disease through milk and other foods.
Perhaps the most prominent and far-reaching theory in all of science has been the theory of evolution by natural selection put forward by the British naturalist Charles Darwin in his On the Origin of Species in 1859. Darwin's theory proposed that all differences in animals were formed by natural processes over long periods of time, and that even humans were simply evolved organisms. Implications of evolution on fields outside of pure science have led to both opposition and support from different parts of society, and profoundly influenced the popular understanding of "man's place in the universe". In the early 20th century, the study of heredity became a major investigation after the rediscovery in 1900 of the laws of inheritance developed by the Austrian monk Gregor Mendel in 1866. Mendel's laws provided the beginnings of the study of genetics, which became a major field of research for both scientific and industrial research. By 1953, James Watson and Francis Crick clarified the basic structure of DNA, the genetic material for expressing life in all its formsTemplate:Fn. In the late 20th century, the possibilities of genetic engineering became practical for the first time, and a massive international effort began in 1990 to map out an entire human genome (the Human Genome Project) has been touted as potentially having large medical benefits.
Ecology
Template:Main Image:NASA-Apollo8-Dec24-Earthrise.jpg
The discipline of ecology typically traces its origin to the synthesis of Darwinian evolution and Humboldtian biogeography, in the late 19th and early 20th centuries. Equally important in the rise of ecology, however, were microbiology and soil science—particularly the cycle of life concept, prominent in the work Louis Pasteur and Ferdinand Cohn. The word ecology was coined by Ernst Haeckel, whose particularly holistic view of nature in general (and Darwin's theory in particular) was important in the spread of ecological thinking. In the 1930's, Arthur Tansley and others began developing the field of ecosystem ecology, which combined experimental soil science with physiological concepts of energy and the techniques of field biology. The history of ecology in the 20th century is closely tied to that of environmentalism; the Gaia hypothesis in the 1960s and more recently the scientific-religious movement of Deep Ecology have brought the two closer together.
Social sciences
Successful use of the scientific method in the physical sciences led to the same methodology being adapted to better understand the many fields of human endeavor. From this effort the social sciences have been developed.
Political science
- Main article: History of political science
One of the basic requirements for a scientific community is the existence and approval of a political sponsor; in England, the Royal Society operates under the aegis of the monarchy; in the US, the National Academy of Sciences was founded by Act of Congress; etc. Otherwise, when the basic elements of knowledge were being formulated, the political rulers of the respective communities could choose to arbitrarily either support or disallow the nascent scientific communities. For example, Alhazen had to feign madness to avoid execution. The polymath Shen Kuo lost political support, and could not continue his studies until he came up with discoveries that showed his worth to the political rulers. The admiral Zheng He could not continue his voyages of exploration after the emperors withdrew their support. Another famous example was the suppression of the work of Galileo, and before him, Giordano Bruno, burned at the stake, for his statements on cosmology; by the twentieth century, Galileo would be pardoned.
Linguistics
Historical linguistics emerged as an independent field of study at the end of the 18th century. Sir William Jones proposed that Sanskrit, Persian, Greek, Latin, Gothic, and Celtic languages all shared a common base. After Jones, an effort to catalog all languages of the world was made throughout the 19th century and into the 20th century. Publication of Ferdinand de Saussure's Cours de linguistique générale spawned the development of descriptive linguistics. Descriptive linguistics, and the related structuralism movement caused linguistics to focus on how language changes over time, instead of just describing the differences between languages. Noam Chomsky further diversified linguistics with the development of generative linguistics in the 1950s. His effort is based upon a mathematical model of language that allows for the description and prediction of valid semantics. Additional specialties such as sociolinguistics, cognitive linguistics, and computational linguistics have emerged from collaboration between linguistics and other disciplines.
Economics
The basis for classical economics forms Adam Smith's An Inquiry into the Nature and Causes of the Wealth of Nations, published in 1776. Smith criticized mercantilism, advocating a system of free trade with division of labour. He postulated an "Invisible Hand" that large economic systems could be self-regulating through a process of enlightened self-interest. Karl Marx developed an alternative economical system, called Marxian economics. Marxian economics is based on the labor theory of value and assumes the value of good to be based on the amount of labor required to produce it. Under this assumption, capitalism was based on employeers not paying the full value of workers labor to create profit. The Austrian school responded to Marxian economics by viewing entrepreneurship as driving force of economic development. This replaced the labor theory of value by a system of supply and demand.
In the 1920s, John Maynard Keynes prompted a division between microeconomics and macroeconomics. Under Keynesian economics macroeconomic trends can overwhelm economic choices made by individuals. Governments should promote aggregate demand for goods as a means to encourage economic expansion. Following World War II, Milton Friedman created the concept of monetarism. Monetarism focuses on using the supply and demand of money as a method for controlling economic activity. In the 1970s, monetarism has adapted into supply-side economics which advocates reducing taxes as a means to increase the amount of money available for economic expansion.
Other modern schools of economic thought are New Classical economics and New Keynesian economics. New Classical economics was developed in the 1970s, emphasizing solid microeconomics as the basis for macroeconomic growth. New Keynesian economics was created partially in response to New Classical economics, and deals with how inefficiencies in the market create a need for control by a central bank or government.
Psychology
Template:Main Image:Freud Sofa.JPG
The end of the 19th century marks the start of psychology as a scientific enterprise. The year 1879 is commonly seen as the start of psychology as an independent field of study. In that year Wilhelm Wundt founded the first laboratory dedicated exclusively to psychological research (in Leipzig). Other important early contributors to the field include Hermann Ebbinghaus (a pioneer in memory studies), Ivan Pavlov (who discovered classical conditioning), and Sigmund Freud. Freud's influence has been enormous, though more as cultural icon than a force in scientific psychology. Freud's basic theories postulated the existence in humans of various unconscious and instinctive "drives", and that the "self" existed as a perpetual battle between the desires and demands of the internal id, ego, and superego.
The 20th century saw a rejection of Freud's theories as being too unscientific, and a reaction against Edward Titchener's atomistic approach of the mind. This led to the formulation of behaviorism by John B. Watson, which was popularized by B.F. Skinner. Behaviorism proposed epistemologically limiting psychological study to overt behavior, since that could be reliably measured. Scientific knowledge of the "mind" was considered too metaphysical, hence impossible to achieve. The final decades of the 20th century have seen the rise of a new interdisciplinary approach to studying human psychology, known collectively as cognitive science. Cognitive science again considers the mind as a subject for investigation, using the tools of evolutionary psychology, linguistics, computer science, philosophy, and neurobiology. This new form of investigation has proposed that a wide understanding of the human mind is possible, and that such an understanding may be applied to other research domains, such as artificial intelligence.
Sociology
Ibn Khaldun is regarded as the founder of modern sociology. As a scientific discipline, sociology emerged in the early 19th century as the academic response to the modernization of the world. Among many early sociologists (e.g., Émile Durkheim), the aim of sociology was in structuralism, understanding the cohesion of social groups, and developing an "antidote" to social disintegration. Max Weber was concerned with the modernization of society through the concept of rationalization, which he believed would trap individuals in an "iron cage" of rational thought. Some sociologists, including Georg Simmel and W. E. B. Du Bois, utilized more microsociological, qualitative analyses. This microlevel approach played an important role in American sociology, with the theories of George Herbert Mead and his student Herbert Blumer resulting in the creation of the symbolic interactionism approach to sociology.
American sociology in the 1940s and 1950s was dominated largely by Talcott Parsons, who argued that aspects of society that promoted structural integration were therefore "functional". This structural functionalism approach was questioned in the 1960s, when sociologists came to see this approach as merely a justification for inequalities present in the status quo. In reaction, conflict theory was developed, which was based in part on the philosophies of Karl Marx. Conflict theorists saw society as an arena in which different groups compete for control over resources. Symbolic interactionism also came to be regarded as central to sociological thinking. Erving Goffman saw social interactions as a stage performance, with individuals preparing "backstage" and attempting to control their audience through impression management. While these theories are currently the prominent in sociological thought, other approaches exist, including feminist theory, post-structuralism, rational choice theory, and postmodernism.
Anthropology
Anthropology can best be understood as an outgrowth of the Age of Enlightenment. It was during this period that Europeans attempted systematically to study human behavior. Traditions of jurisprudence, history, philology and sociology developed during this time and informed the development of the social sciences of which anthropology was a part. At the same time, the romantic reaction to the Enlightenment produced thinkers such as Johann Gottfried Herder and later Wilhelm Dilthey whose work formed the basis for the culture concept which is central to the discipline. Traditionally, much of the history of the subject was based on colonial encounters between Europe and the rest of the world, and much of 18th- and 19th-century anthropology is now classed as forms of scientific racism. During the late 19th-century, battles over the "study of man" took place between those of an "anthropological" persuasion (relying on anthropometrical techniques) and those of an "ethnological" persuasion (looking at cultures and traditions), and these distinctions became part of the later divide between physical anthropology and cultural anthropology, the latter ushered in by the students of Franz Boas. In the mid-20th century, much of the methodologies of earlier anthropological and ethnographical study were reevaluated with an eye towards research ethics, while at the same time the scope of investigation has broadened far beyond the traditional study of "primitive cultures" (scientific practice itself is often an arena of anthropological study).
Emerging disciplines
During the 20th century, a number of interdisciplinary scientific fields have emerged. Three examples will be given here:
Communication studies combines animal communication, information theory, marketing, public relations, telecommunications and other forms of communication.
Computer science, built upon a foundation of theoretical linguistics, discrete mathematics, and electrical engineering, studies the nature and limits of computation. Subfields include computability, computational complexity, database design, computer networking, artificial intelligence, and the design of computer hardware. Computer science provides much of the theoretical basis for software engineering.
Materials science has its roots in metallurgy, minerology, and crystallography. It combines chemistry, physics, and several engineering disciplines. The field studies metals, ceramics, plastics, semiconductors, and composite materials.
See also
- History of science and technology (academic field of study)
- Philosophy and Logic
- Epistemology (branch of philosophy concerning the nature, origin and scope of knowledge)
- History of history
- Historiography
- Indian science
- Obsolete scientific theory
- Science studies
- List of famous experiments
- List of scientists
- List of Nobel laureates
- List of years in science
- Philosophy of science
Notes
Template:FnbAlpher, Herman, and Gamow. Nature 162,774 (1948).
Template:FnbWilson's 1978 Nobel lecture
Template:FnbJames D. Watson and Francis H. Crick. "Letters to Nature: Molecular structure of Nucleic Acid." Nature 171, 737–738 (1953).
Template:FnbC.S. Wu's contribution to the overthrow of the conservation of parity – see also the CWP, below
References
- Thomas S. Kuhn (1996). The Structure of Scientific Revolutions (3rd ed.). University of Chicago Press. ISBN 0226458075
- Howard Margolis (2002). It Started with Copernicus. New York: McGraw-Hill. ISBN 0-07-138507-X
- Joseph Needham. Science and Civilisation in China. Multiple volumes (1954–2004).
- Bertrand Russell (1945). A History of Western Philosophy: And Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day. New York: Simon and Schuster.
- Leonard C. Bruno (1989), The Landmarks of Science. ISBN 0-8160-2137-6
- John L. Heilbron, ed., The Oxford companion to the history of modern science (New York: Oxford University Press, 2003).
External links
- A History of Science, Vols 1–4, online text
- MIT STS.002 – Toward the Scientific Revolution. From MIT OpenCourseWare, class materials for the history of science up to and including Isaac Newton.
- MIT STS.042 – Einstein, Oppenheimer, Feynman: Physics in the 20th Century. Class materials for the history of physics in the 20th century.
- Contributions of 20th century Women to Physics ("CWP")
- The official site of the Nobel Foundation. Features biographies and info on Nobel laureates
- The Institute and Museum of the History of Science in Florence, Italybn:বিজ্ঞানের ইতিহাস
de:Wissenschaftsgeschichte eo:Historio de scienco kaj teknologio es:Historia de la ciencia fr:Histoire des sciences gl:Historia da ciencia he:היסטוריה של המדע it:Storia della scienza ja:科学史 nl:Geschiedenis van wetenschap en techniek pl:Historia nauki sl:Zgodovina znanosti in tehnologije ta:அறிவியல், தொ.நுட்ப வரலாறு th:ประวัติศาสตร์ของวิทยาศาสตร์และเทคโนโลยี tl:Kasaysayan ng agham at teknolohiya tr:Bilim ve teknoloji tarihi zh:科学史